计算下列各题:(1)(x-y)2·(x-y)3·(y-x)2·(y-x)3;(2)(a-b-c)(b+c-a)2·(c-a+b)3;(3)(-x)2·(-x)3+2x·(-x)4-(-x)·x4;(4)x·xm-1+x2·xm-2-3x3·xm-3。-七年级数学
题文
计算下列各题: (1)(x-y)2·(x-y)3·(y-x)2·(y-x)3; (2)(a-b-c)(b+c-a)2·(c-a+b)3; (3)(-x)2·(-x)3+2x·(-x)4-(-x)·x4; (4)x·xm-1+x2·xm-2-3x3·xm-3。 |
答案
解:(1)-(x-y)10; (2)-(a-b-c)6; (3)2x5; (4)-xm。 |
据专家权威分析,试题“计算下列各题:(1)(x-y)2·(x-y)3·(y-x)2·(y-x)3;(2)(a-b-c)(b+c-..”主要考查你对 整式的加减乘除混合运算,整式的乘法 等考点的理解。关于这些考点的“档案”如下:
整式的加减乘除混合运算整式的乘法
考点名称:整式的加减乘除混合运算
- 加法、减法、乘法和除法,统称为四则运算。
其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。 - 基本运算顺序:
只有一级运算时,从左到右计算;
有两级运算时,先乘除,后加减。
有括号时,先算括号里的;
有多层括号时,先算小括号里的。
要是有平方,先算平方。
在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。
考点名称:整式的乘法
整式的乘法:
包括(单项式)与(单项式)相乘;(单项式)与(多项式)相乘;(多项式)与(多项式)相乘
单项式与单项式相乘的运算法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。整式乘法法则:
1、同底数的幂相乘:
法则:同底数的幂相乘,底数不变,指数相加。数学符号表示:am.an=am+n(其中m、n为正整数)
2、幂的乘方:
法则:幂的乘方,底数不变,指数相乘。数学符号表示:(am)n=amn(其中m、n为正整数)
3、积的乘方:
法则:积的乘方,先把积中各因式分别乘方,再把所得的幂相乘。(即等于积中各因式乘方的积。)
数学符号表示:(ab)n=anbn(其中n为正整数)
4、单项式与单项式相乘:
把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
5、单项式与多项式相乘:
就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
6、多项式与多项式相乘:
先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
7、乘法公式:
平方差公式:(a+b)·(a-b)=a2-b2,
完全平方公式:(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2。- 整式乘法运算:
单项式乘以单项式法则:
单项式与单项式相乘,利用乘法交换律和结合律,把它们的系数、相同字母的幂分别相乘,其余的字母连同它的指数不变,一起作为积的因式.
注:单项式乘以单项式,实际上是运用了乘法结合律和同底数的幂的运算法则完成的。
①.积的系数等于各因式系数的积,先确定符号,再计算绝对值.这时容易出现的错误是,将系数相乘与指数相加混淆,
如2a3·3a2=6a5,而不要认为是6a6或5a5.
②.相同字母的幂相乘,运用同底数幂的乘法运算性质.
③.只在一个单项式里含有的字母,要连同它的指数作为积的一个因式.
④.单项式乘法法则对于三个以上的单项式相乘同样适用.
⑤.单项式乘以单项式,结果仍是一个单项式.
单项式乘以多项式的运算法则:
单项式与多项式相乘,就是根据乘法分配律用单项式去乘多项式的每一项,转化为单项式与单项式的乘法,然后再把所得的积相加.
法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
方法总结:在探究多项式乘以多项式时,是把某一个多项式看成一个整体,利用分配律进行计算,这里再一次说明了整体性思想在数学中的应用。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |