若对于任意n个连续正整数中,总存在一个数的数字之和是8的倍数.试确定n的最小值.并说明理由.-数学

题文

若对于任意n个连续正整数中,总存在一个数的数字之和是8的倍数.试确定n的最小值.并说明理由.
题型:解答题  难度:中档

答案

先证n≤14时,题设的性质不成立.
当N=14时,对于9999993,9999994,…,10000006这14个连续整数,任意一个数的数字之和均不能被8整除.
故n≤14时,题设的性质不成立.
因此,要使题设的性质成立,应有n≥15.
再证n=15时,题设的性质成立.
设a1,a2,…,a15为任意的连续15个正整数,则这15个正整数中,个位数字为0的整数最多有两个,最少有一个,可以分为:
(1)当a1,a2,…,a15中个位数字为0的整数有两个时,
设ai<aj,且ai、aj的个位数字为0,则满足ai,ai+1,…,ai+9,aj为连续的11个整数,其中ai,ai+1,…,ai+9,aj无进位.
设ni表示ai各位数字之和,则前10个数各位数字之和分别为ni,ni+1,…,ni+9.
故这连续的10个数中至少有一个被8整除.
(2)当a1,a2,…,a15中个位数字为0的整数有一个时(记为ai),
①若整数i满足1≤i≤8时,则在ai后面至少有7个连续整数,于是ai,ai+1,…,ai+7这8个连续整数的个位数字之和也为8个连续整数,所以,必有一个数能被8整除.
②若整数i满足9≤i≤15时,则在ai前面至少有8个连续整数,不妨设ai-8,ai-7,…,ai-1这8个连续整数的个位数字之和也为8个连续整数,所以,必有一个数能被8整除.
综上,对于任意15个连续整数中,必有一个数,其各位数字之和是8的倍数.
而小于15个的任意连续整数不成立此性质.
∴n的最小值是15.

据专家权威分析,试题“若对于任意n个连续正整数中,总存在一个数的数字之和是8的倍数.试..”主要考查你对  整式的加减乘除混合运算  等考点的理解。关于这些考点的“档案”如下:

整式的加减乘除混合运算

考点名称:整式的加减乘除混合运算

  • 加法、减法、乘法和除法,统称为四则运算。
    其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
    注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。

  • 基本运算顺序:
    只有一级运算时,从左到右计算;
    有两级运算时,先乘除,后加减。
    有括号时,先算括号里的;
    有多层括号时,先算小括号里的。
    要是有平方,先算平方。
    在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。