观察下列等式:12×3=12-1313×4=13-14…(1)猜想:1n(n+1)=______.(2)直接写出下列各式的结果:①11×2+12×3+13×4+…+12009×2010=______.②11×2+12×3+13×4+…+1n(n+1)=______.-数学

首页 > 考试 > 数学 > 初中数学 > 分式的加减/2019-04-08 / 加入收藏 / 阅读 [打印]

题文

观察下列等式:
1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4


(1)猜想:
1
n(n+1)
=______.
(2)直接写出下列各式的结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2009×2010
=______.
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
=______.
题型:解答题  难度:中档

答案

(1)∵
1
2×3
=
1
2
-
1
3

1
3×4
=
1
3
-
1
4

1
n(n+1)
=
1
n
-
1
n+1

故答案为:
1
n
-
1
n+1


(2)①原式=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2009
-
1
2010

=1-
1
2010

=
2009
2010

故答案为:
2009
2010

②原式═1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
n
-
1
n+1

=1-
1
n+1

=
n
n+1

故答案为:
n
n+1

据专家权威分析,试题“观察下列等式:12×3=12-1313×4=13-14…(1)猜想:1n(n+1)=______.(2)..”主要考查你对  分式的加减  等考点的理解。关于这些考点的“档案”如下:

分式的加减

考点名称:分式的加减

  • 分式的加减法则:
    同分母的分式相加减,分母不变,把分子相加减;
    异分母的分式相加减,先通分,变为同分母分式,然后再加减。
    用式子表示为:

  • 分式的加减要求:
    ①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
    ②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。