甲、乙两人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度v1与v2(v1>v2),甲前一半的路程使用速度v1、后一半的路程使用速度v2;乙前一半的时间使用速度v2、后-九年级数学
题文
甲、乙两人同时从A地出发,沿同一条道路去B地,途中都使用两种不同的速度v1与v2(v1>v2),甲前一半的路程使用速度v1、后一半的路程使用速度v2;乙前一半的时间使用速度v2、后一半的时间使用速度v1. (1)甲、乙两人从A地到达B地的平均速度各是多少(用v1和v2表示) (2)甲、乙两人谁先到达B地,为什么? (3)如图是甲从A地到达B地的路程s与时间t的函数图象,请你在图中画出相应的乙从A地到达B地的路程s与t的函数图象. |
答案
解:(1)设AB两地的路程为s,乙从A地到B地的总时间为a v甲=,v乙=. (2)v乙-v甲= ∵0<v2<v1, ∴v乙﹣v甲>0,乙先到B地. (3)如图 |
据专家权威分析,试题“甲、乙两人同时从A地出发,沿同一条道路去B地,途中都使用两种不..”主要考查你对 分式的加减乘除混合运算及分式的化简,函数的图像,分式的加减 等考点的理解。关于这些考点的“档案”如下:
分式的加减乘除混合运算及分式的化简函数的图像分式的加减
考点名称:分式的加减乘除混合运算及分式的化简
- 分式的加减乘除混合运算:
分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。
分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。 分式的混合运算:
在解答分式的乘除法混合运算时,注意两点,就可以了:
注意运算的顺序:按照从左到右的顺序依次计算;
注意分式乘除法法则的灵活应用。
考点名称:函数的图像
函数图象的概念:
对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.- 由函数解析式画其图象的一般步骤:
①列表:列表给出自变量与函数的一些对应值;
②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.
利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.
函数图象上的点的坐标与其解析式之间的关系:
①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。
考点名称:分式的加减
- 分式的加减法则:
同分母的分式相加减,分母不变,把分子相加减;
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
用式子表示为: - 分式的加减要求:
①分式的加减运算结果必须是最简分式或整式,运算中要适时地约分;
②如果一个分式与一个整式相加减,那么可以把整式看成是分母为1的分式,先通分,再进行加减。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |