已知对于任意正整数n,都有a1+a2+…+an=n3,则1a2-1+1a3-1+…+1a100-1=______.-数学

题文

已知对于任意正整数n,都有a1+a2+…+an=n3,则
1
a2-1
+
1
a3-1
+…+
1
a100-1
=______.
题型:填空题  难度:中档

答案

∵当n≥2时,有a1+a2+…+an-1+an=n3,a1+a2+…+an-1=(n-1)3,两式相减,得an=3n2-3n+1,
1
an-1
=
1
3n(n-1)
=
1
3
1
n-1
-
1
n
),
1
a2-1
+
1
a3-1
+…+
1
a100-1

=
1
3
(1-
1
2
)+
1
3
1
2
-
1
3
)+…+
1
3
1
99
-
1
100
),
=
1
3
(1-
1
100
),
=
33
100

故答案为:
33
100

据专家权威分析,试题“已知对于任意正整数n,都有a1+a2+…+an=n3,则1a2-1+1a3-1+…+1a10..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。