已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a(1b+1c)+b(1c+1a)+c(1a+1b)=-3;②求a+b+c的值.-数学

题文

已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a(
1
b
+
1
c
)+b(
1
c
+
1
a
)+c(
1
a
+
1
b
)=-3;②求a+b+c的值.
题型:解答题  难度:中档

答案

将①式变形如下,
a(
1
b
+
1
c
)+1+b(
1
c
+
1
a
)+1+c(
1
a
+
1
b
)+1=0,
即a(
1
a
+
1
b
+
1
c
)+b(
1
a
+
1
b
+
1
c
)+c(
1
a
+
1
b
+
1
c
)=0,
∴(a+b+c)(
1
a
+
1
b
+
1
c
)=0,
∴(a+b+c)?
bc+ac+ab
abc
=0,
∴a+b+c=0或bc+ac+ab=0.
若bc+ac+ab=0,则
(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,
∴a+b+c=±1.
∴a+b+c的值为0,1,-1.

据专家权威分析,试题“已知a,b,c为实数,且满足下式:a2+b2+c2=1,①,a(1b+1c)+b(1c+1..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐