已知:a2+4a+1=0,且a4+ma2+12a3+ma2+2a=3,求m的值.-数学

题文

已知:a2+4a+1=0,且
a4+ma2+1
2a3+ma2+2a
=3,求m的值.
题型:解答题  难度:中档

答案

∵a2+4a+1=0,∴a2+1=-4a,
∴(a2+1)2=16a2
∴a4+2a2+1=16a2
即a4+1=14a2
a4+ma2+1
2a3+ma2+2a
=3,
14a2+ma2
2a(a2+1)+ma2
=3,
整理得14a2+ma2=-24a2+3ma2
∴(38-2m)a2=0,
∵a≠0,∴38-2m=0,
∴m=19.

据专家权威分析,试题“已知:a2+4a+1=0,且a4+ma2+12a3+ma2+2a=3,求m的值.-数学-”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐