观察下列各式:62-42=4×5,112-92=4×10,172-152=4×16,…,(1)你发现了什么规律?试用你发现的规律填空:512-492=4×______;752-732=4×.(2)请你用含一个字母的等式将上面各式呈-数学

题文

观察下列各式:62-42=4×5,112-92=4×10,172-152=4×16,…,
(1)你发现了什么规律?试用你发现的规律填空:512-492=4×______;752-732=4×.
(2)请你用含一个字母的等式将上面各式呈现的规律表示出来,并用所学数学知识说明你所写式子的正确性.
写出等式:______证明:
(3)计算乘积(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
20112
)(1-
1
20122
)等于______.(直接写出结果)
题型:解答题  难度:中档

答案

(1)发现的规律为:相差为2的平方差等于这两数之间数的4倍,
则512-492=4×50;752-732=4×74;
(2)得到的规律为:(n+2)2-n2=4(n+1),
证明:等式左边=n2+4n+4-n2=4n+4,右边=4n+4,
则左边=右边,故原等式成立;
(3)原式=(1+
1
2
)(1-
1
2
)(1+
1
3
)(1-
1
3
)…(1+
1
2012
)(1-
1
2012

=(
3
2
×
4
3
×…
2013
2012
)×(
1
2
×
2
3
×…×
2011
2012
)=
2013
2
×
1
2012
=
2013
4024

故答案为:(1)50;74;(2)(n+2)2-n2=4(n+1);(3)
2013
4024

据专家权威分析,试题“观察下列各式:62-42=4×5,112-92=4×10,172-152=4×16,…,(1)你发..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐