观察式子:(1)x2-1=(x-1)(x+1),∴x2-1x+1=______;(2)x3-1=(x-1)(x2+x+1),∴x3-1x2+x+1=______;(3)x3-1=(x-1)(),∴x4-1x3+x2+x+1=x-1;(4)猜想:xn-1=(x-1)(),∴xn-1()=x-1.如-数学

题文

观察式子:
(1)x2-1=(x-1)(x+1),∴
x2-1
x+1
=______;
(2)x3-1=(x-1)(x2+x+1),∴
x3-1
x2+x+1
=______;
(3)x3-1=(x-1)(  ),∴
x4-1
x3+x2+x+1
=x-1;
(4)猜想:xn-1=(x-1)(  ),∴
xn-1
(    )
=x-1.
如果要计算210-29+…+1的值,你能用一个两项式表达210-29+…+1的值吗?
题型:解答题  难度:中档

答案

(1)x2-1=(x-1)(x+1),∴
x2-1
x+1
=x-1;
(2)x3-1=(x-1)(x2+x+1),∴
x3-1
x2+x+1
=x-1;
(3)x4-1=(x-1)(x3+x2+x+1),∴
x4-1
x3+x2+x+1
=x-1;
(4)猜想:xn-1=(x-1)(xn-1+xn-2+…+x+1),∴
xn-1
xn-1+xn-2+…+x+1
=x-1;  
当n=11,x11-1=(x-1)(x10+x9+…+x+1),
令x=-2,则(-2)11-1=[(-2)-1)][(-2)10+(-2)9+…+(-2)+1]=(-3)(210-29+…+1),
所以210-29+…+1=
(-2)11-1
-3
=
1
3
(211-1).
故答案为x-1,x-1.

据专家权威分析,试题“观察式子:(1)x2-1=(x-1)(x+1),∴x2-1x+1=______;(2)x3-1=(x-1)(..”主要考查你对  分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

分式的加减乘除混合运算及分式的化简

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。