己知:如图,梯形ABCD中,AD∥BC,BC⊥y轴于C,AD=1,BC=4,tan∠ABC=,反比例函数的图象过顶点A、B。(1)求k的值;(2)作BH⊥x轴于H,求五边形ABHOD的面积。-九年级数学
题文
己知:如图,梯形ABCD中,AD∥BC,BC⊥y轴于C,AD=1,BC=4,tan∠ABC=,反比例函数的图象过顶点A、B。 |
(1)求k的值; (2)作BH⊥x轴于H,求五边形ABHOD的面积。 |
答案
解:(1)作AE⊥BC于点E,则BE=BC-AD=4-1=3, 又, ∴AE=DC=2, 设A(-1,),B(-4,), ∴,, ∴,即, ∴。 |
|
(2)∵, ∴, ∴当时,, ∴, ∴ 。 |
据专家权威分析,试题“己知:如图,梯形ABCD中,AD∥BC,BC⊥y轴于C,AD=1,BC=4,tan∠ABC..”主要考查你对 求反比例函数的解析式及反比例函数的应用 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:观察下表中x与y的对应数值,则y与x之间的关系式是[]A.y=2xB.y=-x+3C.y=x2-x+D.y=-九年级数学
下一篇:巳知反比例函数的图象经过点(-2,5),则k=().-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |