如图,□ABMN中,AC平分∠BAN交BM于C点,CD∥AB交AN于D点。(1)判断四边形ABCD的形状并证明你的结论;(2)以B点为坐标原点,BM所在的直线为横轴建立平面直角坐标系,若∠ABM=60°,-八年级数学
题文
如图,□ABMN中,AC平分∠BAN交BM于C点,CD∥AB交AN于D点。 |
(1)判断四边形ABCD的形状并证明你的结论; (2)以B点为坐标原点,BM所在的直线为横轴建立平面直角坐标系,若∠ABM=60°,A点横坐标为2,请直接写出A、C、D点坐标及经过D点的反比例函数解析式; (3)设(2)中反比例函数的图象与MN交于P点,求当BM的长为多少时,P点为MN的中点。 |
答案
解:(1)是菱形, 证明:∵四边形ABMN是平行四边形 ∴AD∥BC ∵CD∥AB ∴四边形ABCD是平行四边形 ∵AC平分∠BAN ∴∠BAC=∠DAC ∵AD∥BC ∴∠CAD=∠ACB ∴∠BAC=∠ACB ∴BA=BC ∴□ABCD是菱形。 (2)A(2,2),C(4,0),D(6,2),。 (3)设BM=a,则点 把代入 解得 所以当BM=11时,反比例函数的图象经过MN的中点。 |
据专家权威分析,试题“如图,□ABMN中,AC平分∠BAN交BM于C点,CD∥AB交AN于D点。(1)判断四..”主要考查你对 求反比例函数的解析式及反比例函数的应用,菱形,菱形的性质,菱形的判定 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用菱形,菱形的性质,菱形的判定
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
考点名称:菱形,菱形的性质,菱形的判定
- 菱形的定义:
在一个平面内,有一组邻边相等的平行四边形是菱形。 菱形的性质:
①菱形具有平行四边形的一切性质;
②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
③菱形的四条边都相等;
④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。菱形的判定:
在同一平面内,
(1)定义:有一组邻边相等的平行四边形是菱形
(2)定理1:四边都相等的四边形是菱形
(3)定理2:对角线互相垂直的平行四边形是菱形
菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |