点P在反比例函数y=kx(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,则反比例函数的解析式为______.-数学
题文
点P在反比例函数y=
|
答案
∵点Q(2,4)和点P关于y轴对称, ∴P点坐标为(-2,4), 将(-2,4)解析式y=
k=xy=-2×4=-8, ∴函数解析式为y=-
故答案为y=-
|
据专家权威分析,试题“点P在反比例函数y=kx(k≠0)的图象上,点Q(2,4)与点P关于y轴对称,..”主要考查你对 求反比例函数的解析式及反比例函数的应用,用坐标表示轴对称 等考点的理解。关于这些考点的“档案”如下:
求反比例函数的解析式及反比例函数的应用用坐标表示轴对称
考点名称:求反比例函数的解析式及反比例函数的应用
反比例函数解析式的确定方法:
由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。反比例函数的应用:
建立函数模型,解决实际问题。- 用待定系数法求反比例函数关系式的一般步骤是:
①设所求的反比例函数为:y= (k≠0);
②根据已知条件(自变量与函数的对应值)列出含k的方程;
③由代人法解待定系数k的值;
④把k值代人函数关系式y= 中。
反比例函数应用一般步骤:
①审题;
②求出反比例函数的关系式;
③求出问题的答案,作答。
考点名称:用坐标表示轴对称
用坐标表示轴对称:
关于x轴对称的点的坐标的特点是:横坐标不变,纵坐标互为相反数;
关于y轴对称的点的坐标的特点是:横坐标互为相反数,纵坐标不变。
点(x, y)关于x轴对称的点的坐标为x,-y ,
点(x, y)关于y轴对称的点的坐标为-x,y。
例如图中:
点A(2,3)关于x轴对称的点的坐标为A,,(-2,3);
点A(2,3)关于x轴对称的点的坐标为A,(2,3)。- 点拨:
①写出平面坐标系中一个点关于x轴和y轴对称的点的坐标:
关于x轴对称的点横坐标相等,纵坐标互为相反数;关于y轴对称的点横坐标互为相反数,纵坐标相等。
②画出一个图形关于x轴或y轴对称:
先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |