初中数学几何图形综合题精讲*

首页 > 教育新闻 > 教育杂谈/2018-02-10 / 加入收藏 / 阅读 [打印]
∴∠BAD+2∠BAD+2∠BAD=180°.∴∠BAD=36°.

设BD=a,作BG平分∠ABD,

∴∠BAD=∠GBD=36°.∴AG=BG=BD=a.

∴DG=AD-AG=AD-BG=AD-BD.

∵∠BDG=∠ADB,∴△BDG∽△ADB.

∴BD/AD=DG/DB.∴BD/AD=(AD-BD)/BD∴AD/BD=(1+根号5)/2。

∵∠FAD=∠EBD,∠AFD=∠BED,∴△AFD∽△BED.

∴BD/AD=BE/AF.∴AF=BD/AD·BE=(1+根号5)/2*x.

2.如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.

初中数学几何图形综合题

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.

解:(1)证明:延长ED交AG于点H,

∵点O是正方形ABCD两对角线的交点,

∴OA=OD,OA⊥OD.

在△AOG和△DOE中,1.OA=OD;2.∠AOG=∠DOE=90°;3.OG=OE

∴△AOG≌△DOE.∴∠AGO=∠DEO.

∵∠AGO+∠GAO=90°,∴∠GAO+∠DEO=90°.

∴∠AHE=90°,即DE⊥AG.

(2)①在旋转过程中,∠OAG′成为直角有两种情况:

(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,

∵OA=OD=1/2*OG=1/2*OG′,

∴在Rt△OAG′中,sin∠AG′O=OA/OG′=1/2

∴∠AG′O=30°.

∵OA⊥OD,OA⊥AG′,∴OD∥AG′.

∴∠DOG′=∠AG′O=30°,即α=30°.

(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,

同理可求∠BOG′=30°,∴α=180°-30°=150°.

综上所述,当∠OAG′=90°时,α=30°或150°.

②AF′的最大值为2分子根号2+2,此时α=315°.

提示:如图

初中数学几何图形综合题

当旋转到A,O,F′在一条直线上时,AF′的长最大,

∵正方形ABCD的边长为1,

∴OA=OD=OC=OB=2分子根号2.

∵OG=2OD,∴OG′=OG=.∴OF′=2.

∴AF′=AO+OF′=2分子根号2+2.∵∠COE′=45°,∴此时α=315°.

3.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.

(1)当AN平分∠MAB时,求DM的长;

(2)连接BN,当DM=1时,求△ABN的面积;

(3)当射线BN交线段CD于点F时,求DF的最大值.

初中数学几何图形综合题

解:(1)由折叠可知△ANM≌△ADM,

∴∠MAN=∠DAM.

∵AN平分∠MAB,

∴∠MAN=∠NAB.