初中数学几何图形综合题精讲*
∵四边形ABCD是矩形,
∴∠DAB=90°.∴∠DAM=30°.
∴DM=AD·tan∠DAM=3×3分子根号3=根号3。
(2)如图1,延长MN交AB延长线于点Q.
∵四边形ABCD是矩形,∴AB∥DC.
∴∠DMA=∠MAQ.
由折叠可知△ANM≌△ADM,
∴∠DMA=∠AMQ,AN=AD=3,MN=MD=1.
∴∠MAQ=∠AMQ.
∴MQ=AQ.
设NQ=x,则AQ=MQ=1+x.
在Rt△ANQ中,AQ2=AN平方+NQ平方,
∴(x+1)平方=3的平方+x的平方.解得x=4.
∴NQ=4,AQ=5.
∵AB=4,AQ=5,
∴SΔNAB=4/5*S,ΔNAQ=4/5·1/2·AN·NQ=24/5.
(3)如图2,过点A作AH⊥BF于点H,则△ABH∽△BFC,∴BH/AH=CF/BC.
∵AH≤AN=3,AB=4,
∴当点N,H重合(即AH=AN)时,DF最大.(AH最大,BH最小,CF最小,DF最大)
此时M,F重合,B,N,M三点共线,△ABH≌△BFC(如图3),
∴DF的最大值为4-根号7
类型2 动态探究题
4.(2016·自贡)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.
(1)如图1,已知折痕与边BC交于点O,连接AP,OP,OA.若△OCP与△PDA的面积比为1∶4,求边CD的长;
(2)如图2,在(1)的条件下,擦去折痕AO,线段OP,连接BP.动点M在线段AP上(点M与点P,A不重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问当动点M,N在移动的过程中,线段EF的长度是否发生变化?若变化,说明变化规律.若不变,求出线段EF的长度.
解:(1)∵四边形ABCD是矩形,∴∠C=∠D=90°.
∴∠APD+∠DAP=90°.
∵由折叠可得∠APO=∠B=90°,
∴∠APD+∠CPO=90°.∴∠CPO=∠DAP.
又∵∠D=∠C,∴△OCP∽△PDA.∵△OCP与△PDA的面积比为1∶4,
设OP=x,则CO=8-x.在Rt△PCO中,∠C=90°,
由勾股定理得
,解得x=5.∴AB=AP=2OP=10.∴CD=10.
(2)过点M作MQ∥AN,交PB于点Q.
∵AP=AB,MQ∥AN,
∴∠APB=∠ABP=∠MQP.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |