初中数学几何图形综合题精讲*
∵MQ∥AN,∴∠QMF=∠BNF.
在△MFQ和△NFB中,1.∠QFM=∠NFB;2.∠QMF=∠BNF;3.MQ=BN
∴△MFQ≌△NFB(AAS).∴QF=BF=0.5QB.
∴EF=EQ+QF=0.5PQ+0.5QB=0.5PB.由(1)中的结论可得PC=4,BC=8,∠C=90°,
∴在(1)的条件下,当点M,N在移动过程中,线段EF的长度不变,它的长度为2*根号5.
5.如图,在直角坐标系xOy中,矩形OABC的顶点A,C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C,B重合),连接OP,AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.
(1)当x为何值时,OP⊥AP?
(2)求y与x的函数关系式,并写出x的取值范围;
(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积.若存在,请求x的值;若不存在,请说明理由.
解:(1)由题意知OA=BC=5,AB=OC=2,∠B=∠OCM=90°,BC∥OA.
∵OP⊥AP,
∴∠OPC+∠APB=∠APB+∠PAB=90°.
∴∠OPC=∠PAB.
∴△OPC∽△PAB.
解得x1=4,x2=1(不合题意,舍去).
∴当x=4时,OP⊥AP.
(2)∵BC∥OA,∴∠CPO=∠AOP.
∵∠AOP=∠COM,∴∠COM=∠CPO.
∵∠OCM=∠PCO,∴△OCM∽△PCO.
∴y=x-4/x(2<x<5).
(3)存在x符合题意.过点E作ED⊥OA于点D,交MP于点F,则DF=AB=2.
∵△OCM与△ABP面积之和等于△EMP的面积,
∴S△EOA=S矩形OABC=2×5=1/2·5ED.
∴ED=4,EF=2.
∵PM∥OA,∴△EMP∽△EOA.
解得y=5/2.
6.如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿O
B方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.
(1)当t=5时,请直接写出点D,点P的坐标;
(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;
(3)点P在线段AB或线段BC上运动时,作
PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.
解:(1)D(-4,3),P(-12,8).
(2)当点P在边AB上时,BP=6-t.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |