初中数学几何图形综合题精讲*

首页 > 教育新闻 > 教育杂谈/2018-02-10 / 加入收藏 / 阅读 [打印]
∴MP=MQ.∵BN=PM,∴BN=QM.∵MP=MQ,ME⊥PQ,∴EQ=0.5PQ.

∵MQ∥AN,∴∠QMF=∠BNF.

在△MFQ和△NFB中,1.∠QFM=∠NFB;2.∠QMF=∠BNF;3.MQ=BN

∴△MFQ≌△NFB(AAS).∴QF=BF=0.5QB.

∴EF=EQ+QF=0.5PQ+0.5QB=0.5PB.由(1)中的结论可得PC=4,BC=8,∠C=90°,

初中数学几何图形综合题

∴在(1)的条件下,当点M,N在移动过程中,线段EF的长度不变,它的长度为2*根号5.

5.如图,在直角坐标系xOy中,矩形OABC的顶点A,C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C,B重合),连接OP,AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.

(1)当x为何值时,OP⊥AP?

(2)求y与x的函数关系式,并写出x的取值范围;

(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积.若存在,请求x的值;若不存在,请说明理由.

初中数学几何图形综合题

解:(1)由题意知OA=BC=5,AB=OC=2,∠B=∠OCM=90°,BC∥OA.

∵OP⊥AP,

∴∠OPC+∠APB=∠APB+∠PAB=90°.

∴∠OPC=∠PAB.

∴△OPC∽△PAB.

初中数学几何图形综合题

解得x1=4,x2=1(不合题意,舍去).

∴当x=4时,OP⊥AP.

(2)∵BC∥OA,∴∠CPO=∠AOP.

∵∠AOP=∠COM,∴∠COM=∠CPO.

∵∠OCM=∠PCO,∴△OCM∽△PCO.

初中数学几何图形综合题

∴y=x-4/x(2<x<5).

(3)存在x符合题意.过点E作ED⊥OA于点D,交MP于点F,则DF=AB=2.

∵△OCM与△ABP面积之和等于△EMP的面积,

∴S△EOA=S矩形OABC=2×5=1/2·5ED.

∴ED=4,EF=2.

∵PM∥OA,∴△EMP∽△EOA.

初中数学几何图形综合题

解得y=5/2.

初中数学几何图形综合题

6.如图1,矩形ABCD的两条边在坐标轴上,点D与坐标原点O重合,且AD=8,AB=6.如图2,矩形ABCD沿O

B方向以每秒1个单位长度的速度运动,同时点P从A点出发也以每秒1个单位长度的速度沿矩形ABCD的边AB经过点B向点C运动,当点P到达点C时,矩形ABCD和点P同时停止运动,设点P的运动时间为t秒.

初中数学几何图形综合题

(1)当t=5时,请直接写出点D,点P的坐标;

(2)当点P在线段AB或线段BC上运动时,求出△PBD的面积S关于t的函数关系式,并写出相应t的取值范围;

(3)点P在线段AB或线段BC上运动时,作

PE⊥x轴,垂足为点E,当△PEO与△BCD相似时,求出相应的t值.

解:(1)D(-4,3),P(-12,8).

(2)当点P在边AB上时,BP=6-t.