初中数学几何图形综合题精讲*
∴S=0.5BP·AD=0.5(6-t)·8=-4t+24.
当点P在边BC上时,BP=t-6.
∴S=0.5BP·AB=0.5(t-6)·6=3t-18.
类型3 类比探究题
7.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.
(1)求证:PC=PE;
(2)求∠CPE的度数;
(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.
解:(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,
在△ABP和△CBP中,1.AB=BC;2.PB=PB;3.∠ABP=∠CBP
∴△ABP≌△CBP(SAS).∴PA=PC.
又∵PA=PE,∴PC=PE.
(2)由(1)知,△ABP≌△CBP,
∴∠BAP=∠BCP.∴∠DAP=∠DCP.
∵PA=PE,∴∠DAP=∠E.
∴∠DCP=∠E.
∵∠CFP=∠EFD(对顶角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠E,
即∠CPF=∠EDF=90°.
(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,
在△ABP和△CBP中,1.AB=BC;2.PB=PB;3.∠ABP=∠CBP
∴△ABP≌△CBP(SAS).
∴PA=PC,∠BAP=∠BCP.
∵PA=PE,∴PC=PE.∴∠DAP=∠DCP.
∵PA=PE,∴∠DAP=∠AEP.
∴∠DCP=∠AEP.
∵∠CFP=∠EFD(对顶角相等),
∴180°-∠PFC-∠PCF=180°-∠DFE-∠AEP,
即∠CPF=∠EDF=180°-∠ADC=180°-120°=60°.
∴△EPC是等边三角形.∴PC=CE.
∴AP=CE.
8.已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90°.
(1)如图1,当四边形ABCD和EFCG均为正方形时,连接BF.
①求证:△CAE∽△CBF;
②若BE=1,AE=2,求CE的长;
(2)如图2,当四边形ABCD和EFCG均为矩形,且AB/BC=EF/FC=k时,若BE=1,AE=2,CE=3,求k的值;
(3)如图3,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
解:(1)证明:①∵四边形ABCD和EFCG均为正方形,
∴∠ACB=45°,∠ECF=45°.
∴∠ACB-∠ECB=∠ECF-∠ECB,
即∠ACE=∠BCF.
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[高考] 2022 西安电子科技大学《软件工程》大作业答案 (2022-04-25) |
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |