某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发-数学

首页 > 考试 > 数学 > 小学数学 > 奇数,偶数/2019-08-12 / 加入收藏 / 阅读 [打印]

题文

某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,原计划一等奖每人发给6支,二等奖每人发给3支,三等奖每人发给2支,后来改为一等将每人发13支,二等奖每人发4支,三等奖每人发1支.那么获二等奖的有______人.
题型:填空题  难度:偏易

答案

根据“后来改为一等奖每人发13支”,可以确定获一等奖的人数不大于3.否则仅一等奖就要发不小于39支铅笔,已超过35支,这是不可能的.
当获一等奖有1人时,那么按原计划发二、三等奖的铅笔数应是35-6=29,按改变后发二、三等奖的铅笔数应是35-13=22.
因为29是奇数,可以确定获二等奖的人数必定是奇数.又根据改变后“二等奖每人发4支”,且总数不超过22支,我们能够推知二等奖人数不会超过5,经检验,只有获二等奖是3人才符合题目要求.
故答案为:3.

据专家权威分析,试题“某次数学竞赛准备了35支铅笔作为奖品发给一、二、三等奖的学生,..”主要考查你对  奇数,偶数  等考点的理解。关于这些考点的“档案”如下:

奇数,偶数

考点名称:奇数,偶数

  • 奇数、偶数:
    在自然数中,能被2整除的数,叫做偶数;不能被2整除的数是奇数。

  • 奇数偶数性质:
    偶数±偶数=偶数    奇数±奇数=偶数 
    偶数±奇数=奇数    奇数×奇数=奇数 
    偶数×偶数=偶数      奇数×偶数=偶数
    0是一个特殊的偶数:
    它既是正偶数与负偶数的分界线,又是正奇数与负奇数的分水岭。

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐