有9、7、2、1、0五个数字,用其中的四个数字,组成能同时被2、3、5整除的最小的四位数是______.-数学

题文

有9、7、2、1、0五个数字,用其中的四个数字,组成能同时被2、3、5整除的最小的四位数是______.
题型:填空题  难度:偏易

答案

根据能被2、3、5整除的数的特征,可知:
这个四位数的个位上的数一定是0,
要保证这个四位数最小,千位上只要是1,
再想1+0+2+9=12,是3的倍数,
所以要最小百位上应是2,十位上就是9,
所以这个四位数是1290;
故答案为:1290.

据专家权威分析,试题“有9、7、2、1、0五个数字,用其中的四个数字,组成能同时被2、3、..”主要考查你对  因数,倍数,约数,公因数(公约数),公倍数  等考点的理解。关于这些考点的“档案”如下:

因数,倍数,约数,公因数(公约数),公倍数

考点名称:因数,倍数,约数,公因数(公约数),公倍数

  • a能被数b整除,a就叫做b的倍数,b就叫做a的因数或约数。  
    因数 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。 因数和倍数都表示一个数和另一个数的关系,它们是相互依存的。
    倍数 一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。
    几个数公有的因数,叫做这几个数的公因数。 
    几个数公有的倍数,叫做这几个数的公倍数。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐