在黑板上写出下面的数2,3,4…,2001.甲先去擦其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如-数学

题文

在黑板上写出下面的数2,3,4…,2001.甲先去擦其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由(注:两数互质是两个数无1以外的公约数,如2与5互质,3与15不互质).
题型:解答题  难度:中档

答案

选甲.
甲有必胜方案:先把2擦掉,这样还剩下3,4,5…2001总共1999个数,其中1000个奇数,999个偶数.
然后将剩下的数分组,如(3,4)、(5,6)、(7,8)、…、(1999,2001),接下来无论乙擦去哪个数,甲只要将同组的另一个数擦去就可以了,这样最后剩下的两个数一定相邻,是互质的由于最后一个数是甲擦掉的,因此最后剩下的两个数必定是一奇一偶,甲获胜.

据专家权威分析,试题“在黑板上写出下面的数2,3,4…,2001.甲先去擦其中的一个数,然后..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐