迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数.小王发现由8个质数组成的数列41,43,47,53,61,71,83,97的一个通项公式,并根据通项公式得出数列的后几项-数学

题文

迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数.小王发现由8个质数组成的数列41,43,47,53,61,71,83,97的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.小王欣喜万分,但小王按得出的通项公式,再往后写几个数发现它们不是质数.他写出不是质数的一个数是(  )
A.1643B.1679C.1681D.1697
题型:单选题  难度:偏易

答案

∵43-41=2,47-43=4,53-47=6,61-53=8,71-61=10…,
∴a2-a1=2,a3-a2=4,a4-a3=6…an-an-1=2(n-1),
∴an-a1=2+4+6+8+…+2(n-1)=
(n-12+2n-2)
2
=
n(n-1)
2

∴an=
n2
2
-
n
2
+41,
把A、B、C、D分别代入此式验证可得只有C符合.
故选C.

据专家权威分析,试题“迄今为止,人类已借助“网格计算”技术找到了630万位的最大质数.小..”主要考查你对  有理数定义及分类  等考点的理解。关于这些考点的“档案”如下:

有理数定义及分类

考点名称:有理数定义及分类

  • 有理数的定义:
    有理数是整数和分数的统称,一切有理数都可以化成分数的形式。

  • 有理数的分类:
    (1)按有理数的定义:
                                  正整数 
                     整数{     零 
                                  负整数
    有理数{     
                                正分数 
                    分数{
                                负分数
     

    (2)按有理数的性质分类: 
                               正整数  
                   正数{ 
                               正分数
    有理数{  零
                               负整数 
                   负数{
                               负分数

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐