已知的整数部分为a,小数部分为b,求a2+ab+b2的值。-九年级数学

题文

已知的整数部分为a,小数部分为b,求a2+ab+b2的值。
题型:解答题  难度:中档

答案

解:
又∵

据专家权威分析,试题“已知的整数部分为a,小数部分为b,求a2+ab+b2的值。-九年级数学-..”主要考查你对  二次根式的加减乘除混合运算,二次根式的化简,估算无理数的大小  等考点的理解。关于这些考点的“档案”如下:

二次根式的加减乘除混合运算,二次根式的化简估算无理数的大小

考点名称:二次根式的加减乘除混合运算,二次根式的化简

  • 二次根式的加减乘除混合运算:
    顺序与师叔运算的顺序一样,先乘方,后乘除,最后算加减,有括号的先算括号内的。
    ①在运算过程中,多项式乘法,乘法公式和有理数(式)中的运算律在二次根式的运算中仍然适用。
    ②二次根式的加减乘除混合运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”。
    ③运算结果是根式的,一般应表示为最简二次根式。
    二次根式的化简:
    先对分子、分母因式分解,能约分的就约分,能开方的就开方,或先对被开方数进行通分,然后再通过分母有理化进行化简。

  • 二次根式混合运算掌握:
    1、确定运算顺序。
    2、灵活运用运算定律。
    3、正确使用乘法公式。
    4、大多数分母有理化要及时。
    5、在有些简便运算中也许可以约分,不要盲目有理化。
    6、字母运算时注意隐含条件和末尾括号的注明。
    7、提公因式时可以考虑提带根号的公因式。

    二次根式化简方法:
    二次根式的化简是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。
    分母有理化:
    分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:
    (1)直接利用二次根式的运算法则:
    例:
    (2)利用平方差公式:
    例:
    (3)利用因式分解:
    例:(此题可运用待定系数法便于分子的分解)

    换元法(整体代入法):
    换元法即把根式中的某一部分用另一个字母代替的方法,是化简的重要方法之一。
    例:在根式中,令,即可得到
    原式=√(u2+9-6u)+√(u2+25-10u)=√(u-3)2+√(u-5)2=2u-8=2√(x+2)-8

    提公因式法:
    例:计算


    巧构常值代入法:
    例:已知x2-3x+1=0,求的值。
    分析:已知形如ax2+bx+c=0(x≠0)的条件,所求式子中含有的项,可先将ax2+bx+c=0化为x+=,即先构造一个常数,再代入求值。
    解:显然x≠0,x2-3x+1=0化为x+=3。
    原式==2.

考点名称:估算无理数的大小

  • 在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方。一般情况下从1到达20整数的平方都应牢记。
    例:估算的取值范围。
    解:因为1<3<4,所以
    即:1<<2如果想估算的更精确一些,
    比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.
    因为2.89<3<3.24,
    所以
    所以1.7<<1.8。
    如果需要估算的数比较大,可以找几个比较接近的数值验证一下。

  • 比较无理数大小的几种方法:
    比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
    一、直接法
    直接利用数的大小来进行比较。
    ①、同是正数:
    例:<?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" /> <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" /> 与3的比较
    根据无理数和有理数的联系,被开数大的那个就大。
    因为3=>,所以3>
    ②、 同是负数:
    根据无理数和有理数的联系,及同是负数绝对值大的反而小。
    ③、 一正一负:
    正数大于一切负数。

    二、隐含条件法:
    根据二次根式定义,挖掘隐含条件。
     例:比较的大小。
    因为成立
    所以a-2≧0即a≧2
    所以1-a≦-1
    所以≧0,≦-1
    所以>

    三、同次根式下比较被开方数法:
    例:比较4与5大小
    因为



    四、作差法:
    若a-b>0,则a>b
    例:比较3--2的大小
    因为3---2
    =3--+2
    =5-2
    <=2.5
    所以:5-2>0
    即3->-2

    五、作商法:
    a>0,b>0,若>1,则a>b
    例:比较的大小
    因为÷
    =×
    =<1
    所以:<

    六、找中间量法
    要证明a>b,可找中间量c,转证a>c,c>b
    例:比较的大小
    因为>1,1>
    所以>

    七、平方法:
    a>0,b>0,若a2>b2,则a>b。
    例:比较的大小
    ()2=5+2+11=16+2
    ()2=6+2+10=16+2
    所以:<

    八、倒数法:


    九、有理化法:
    可分母有理化,也可分子有理化。



    十、放缩法:

  • 常用无理数口诀记忆:
    √2≈1.41421:意思意思而已
    √3≈1.7320:一起生鹅蛋
    √5≈2.2360679:两鹅生六蛋(送)六妻舅
    √7≈2.6457513:二妞是我,气我一生
    √8=2√2≈2.82842啊,不啊不是啊
    e≈2.718:粮店吃一把
    π≈3.14159,26535,897,932,384,262:
    山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐