已知关于x的方程mx2-(3m+2)x+2m+2=0(1)判断命题:“无论m取何值,方程总有两个不相等的实数根”的真假,如果是真命题请给出证明:如果是假命题请举一个反例.(2)若m≠0,设方程的两-数学

题文

已知关于x的方程mx2-(3m+2)x+2m+2=0
(1)判断命题:“无论m取何值,方程总有两个不相等的实数根”的真假,如果是真命题请给出证明:如果是假命题请举一个反例.
(2)若m≠0,设方程的两个实数根分别为x1,x2(其中x1<x2),若y=(x1+x2)2-x12?x22,当m的取值范围满足什么条件时,y≤2

m2
题型:解答题  难度:中档

答案

(1)此命题是假命题.例如,当m=0时,由已知方程得
-2x+2=0,
解得,x=1,即原方程有一个实数根;
故“无论m取何值,方程总有两个不相等的实数根”是假命题;

(2)∵方程的两个实数根分别为x1,x2(其中x1<x2),且m≠0,
∴x1+x2=
3m+2
m
,x1?x2=
2m+2
m

∴y=(x1+x2)2-x12?x22=
5m+4
m

又∵y≤2

m2

∴2

m2
5m+4
m
,即2|m|≤
5m+4
m
 ①,
①当m>0时,由不等式①,得
2m2-5m-4≤0,
解得,0<m≤
5+

57
4

②当m<0时,由不等式①,得
2m2+5m+4≥0,解得,
m∈R,且m≠0,
∴m<0.
综上可知0<m≤
5+

57
4
或m<0时,y≤2

m2

据专家权威分析,试题“已知关于x的方程mx2-(3m+2)x+2m+2=0(1)判断命题:“无论m取何值,方..”主要考查你对  一元二次方程根与系数的关系,一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系一元二次方程根的判别式

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。