已知关于x的一元二次方程(n+1)x2+x-n=0的两个实根分别为an、bn(n为正整数),则a1?a2?a3…a2011?b1?b2?b3…b2011的值是()A.-12012B.12012C.-12011D.12011-数学

题文

已知关于x的一元二次方程(n+1)x2+x-n=0的两个实根分别为an、bn(n为正整数),则a1?a2?a3…a2011?b1?b2?b3…b2011的值是(  )
A.-
1
2012
B.
1
2012
C.-
1
2011 
D.
1
2011
题型:单选题  难度:中档

答案

当n=1时,方程是2x2+x-1=0,
∴a1?b1=-
1
2

当n=2时,方程是3x2+x-2=0,
∴a2?b2=-
2
3


an?bn=-
n
n+1

∴a1?a2…b1?b2…b2011=-
1
2
?(-
2
3
)…(-
2011
2012
)=-
1
2012

故选A.

据专家权威分析,试题“已知关于x的一元二次方程(n+1)x2+x-n=0的两个实根分别为an、bn(n..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0