已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了一次项系数的符号,误求得两根为-1和4,则2b+3ca的值为()A.2B.3C.5-数学

题文

已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和4,乙由于看错了一次项系数的符号,误求得两根为-1和4,则
2b+3c
a
的值为(  )
A.2B.3C.5D.-6
题型:单选题  难度:偏易

答案

对于甲:设k(x-2)(x-4)=0,
得kx2-6kx+8k=0,
对于乙:设p(x+1)(x-4)=0,
得px2-3px-4p=0,
从这两个方程可看出:无论怎么错误,甲和乙的方程里面常量相等,
所以8k=-4p,即p=-2k,
2b+3c
a
=
-12k+24k
-2k
=-6.
故选D.

据专家权威分析,试题“已知关于x的一元二次方程ax2+bx+c=0没有实数根,甲由于看错了二次..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0