已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β.(1)试用含有α、β的代数式表示p、q;(2)求证:α≤1≤β;(3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且-数学

题文

已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β.
(1)试用含有α、β的代数式表示p、q;
(2)求证:α≤1≤β;
(3)若以α、β为坐标的点M(α、β)在△ABC的三条边上运动,且△ABC顶点的坐标分别为A(1,2),B(
1
2
,1),C(1,1),问是否存在点M,使p+q=
5
4
?若存在,求出点M的坐标;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)∵α、β为方程x2-(p+q+1)x+p=0(q≥0)的两个实数根,
∴判别式△=(p+q+1)2-4p=(p+q-1)2+4q≥0,
且α+β=p+q+1,αβ=p,
于是p=αβ,
q=α+β-p-1=α+β-αβ-1;
(2)∵(1-a)(1-β)=1-(α+β)+αβ=-q≤0(q≥0),
又α≤β,
∴a≤1≤β;
(3)若使p+q=
5
4
成立,只需α+β=p+q+1=
9
4

①当点M(α,β)在BC边上运动时,
由B(
1
2
,1),C(1,1),
1
2
≤α≤1,β=1,
而α=
9
4
-β=
9
4
-1=
5
4
>1,
故在BC边上存在满足条件的点,其坐标为(
5
4
,1)所以不符合题意舍去;
即在BC边上不存在满足条件的点
②当点M(α,β)在AC边上运动时,
由A(1,2),C(1,1),
得a=1,1≤β≤2,
此时β=
9
4
-α=
9
4
-1=
5
4

又因为1<
5
4
<2,
故在AC边上存在满足条件的点,其坐标为(1,
5
4
);
③当点M(α,β)在AB边上运动时,
由A(1,2),B(
1
2
,1),
1
2
≤α≤1,1≤β≤2,
由平面几何知识得
1-α
1-
1
2
=
2-β
2-1

于是β=2α,

β=2α
α+β=
9
4
解得α=
3
4
,β=
3
2

又因为
1
2
3
4
<1,1<
3
2
<2,
故在AB边上存在满足条件的点,其坐标为(
3
4
3
2
).
综上所述,当点M(α,β)在△ABC的三条边上运动时,存在点(1,
5
4
)和点(
3
4
3
2
),使p+q=
5
4
成立.

据专家权威分析,试题“已知关于x的方程x2-(q+p+1)x+p=0(q≥0)的两个实数根为α、β,且α≤β..”主要考查你对  一元二次方程根与系数的关系,一元二次方程根的判别式,相似三角形的判定,用坐标表示位置  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系一元二次方程根的判别式相似三角形的判定用坐标表示位置

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。

考点名称:相似三角形的判定

  • 相似三角形:
    对应角相等,对应边成比例的两个三角形叫做相似三角形。
    互为相似形的三角形叫做相似三角形。

    例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'

  • 相似三角形的判定:
    1.基本判定定理
    (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
    (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
    (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
    (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
    2.直角三角形判定定理
    (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
    (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
    3.一定相似:
    (1).两个全等的三角形
    (全等三角形是特殊的相似三角形,相似比为1:1)
    (2).两个等腰三角形
    (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
    (3).两个等边三角形
    (两个等边三角形,三个内角都是60度,且边边相等,所以相似) 
    (4).直角三角形中由斜边的高形成的三个三角形。

  • 相似三角形判定方法:
    证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
    一、(预备定理)
    平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
    二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
    三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。 
    四、如果两个三角形的三组对应边成比例,那么这两个三角形相似
    五(定义)
    对应角相等,对应边成比例的两个三角形叫做相似三角形
    六、两三角形三边对应垂直,则两三角形相似。
    七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
    八、由角度比转化为线段比:h1/h2=Sabc

    易失误
    比值是一个具体的数字如:AB/EF=2
    而比不是一个具体的数字如:AB/EF=2:1

考点名称:用坐标表示位置

  • 点的坐标的概念:
    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
    平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。

  • 各象限内点的坐标的特征 :
    点P(x,y)在第一象限;点P(x,y)在第二象限
    点P(x,y)在第三象限;点P(x,y)在第四象限

    坐标轴上的点的特征:
    点P(x,y)在x轴上y=0,x为任意实数
    点P(x,y)在y轴上x=0,y为任意实数
    点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)。

    点P(x,y)到坐标轴及原点的距离:
    (1)点P(x,y)到x轴的距离等于|y|;
    (2)点P(x,y)到y轴的距离等于|x|;
    (3)点P(x,y)到原点的距离等于

  • 坐标表示位置步骤:
    利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:
    (1)建立坐标系,选择一个适当的参照点为原点,确定X轴、y轴的正方向;
    (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
    (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐