已知关于x的方程kx2-4x-2=0有两个实数根.(1)求k的取值范围;(2)若方程的两个实数根为x1,x2,且x12+x22=4,求k的值.-数学

题文

已知关于x的方程kx2-4x-2=0有两个实数根.
(1)求k的取值范围;
(2)若方程的两个实数根为x1,x2,且x12+x22=4,求k的值.
题型:解答题  难度:中档

答案

(1)∵△≥0时,一元二次方程总有两个实数根,
△=(-4)2-4×k×(-2)=16+8k≥0,
k≥-2,
所以k≥-2且k≠0时,方程总有两个实数根.
(2)∵方程的两个实数根为x1,x2,且x12+x22=4,
∴(x1+x22-2x1x2=78,
∵x1+x2=-
b
a
,x1?x2=
c
a

∴(
4
k
2-2×
-2
k
=4,
k2-k-4=0
解得k=

17
2

故k的值是
1+

17
2
1-

17
2

据专家权威分析,试题“已知关于x的方程kx2-4x-2=0有两个实数根.(1)求k的取值范围;(2)若..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐