关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是非零整数).(1)求证:方程有两个不相等的实数根;(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1-2,判断y是否为变量k的-数学

题文

关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是非零整数).
(1)求证:方程有两个不相等的实数根;
(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1-2,判断y是否为变量k的函数?如果是,请写出函数表达式;若不是,请说明理由.
题型:解答题  难度:中档

答案

(1)∵k是非零整数,
∴△=[-(4k+1)]2-4k(3k+3)=16k2+8k+1-12k2-12k=4k2-4k+1=(2k-1)2>0,
∴方程有两个不相等的实数根;

(2)∵x1+x2=
4k+1
k
,x1?x2=
3k+3
k

∴(x1-x22=(x1+x22-4x1?x2=
(4k+1)2
k2
-
12k+12
k
=
(2k-1)2
k2
=(2-
1
k
2
∵k为整数,
∴2-
1
k
>0,
而x1<x2
∴x2-x1=2-
1
k

∴y=2-
1
k
-2
=-
1
k
(k≠0的整数),
∴y是变量k的函数.

据专家权威分析,试题“关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是非零整数).(1)求证:方..”主要考查你对  一元二次方程根与系数的关系  等考点的理解。关于这些考点的“档案”如下:

一元二次方程根与系数的关系

考点名称:一元二次方程根与系数的关系

  • 一元二次方程根与系数的关系:
    如果方程 的两个实数根是那么
    也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。

  • 一元二次方程根与系数关系的推论:
    1.如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p , x1`x2=q
    2.以两个数x1、x2为根的一元二次方程(二次项系数为1)是x2-(x1+x2)x+x1x2=0
    提示:
    ①运用根与系数的关系和运用根的判别式一样,都必须先把方程化为一般形式,以便正确确定a、b、c的值。
    ②有推论1可知,对于二次项系数为1的一元二次方程,他的两根之和等于一次项系数的相反数,两根之积等于常数项。
    ③推论2可以看作推论1的逆定理,利用推论2可以直接求出以两个数x1、x2为根的一元二次方程(二次项系数是1)是x2-(x1+x2)x+x1x2=0

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐