如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA?OB)的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且△ABC的面积为6,(1)求∠ABC的度数;(2)如-数学

题文

如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA?OB)的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,C(0,3),且△ABC的面积为6,
(1)求∠ABC的度数;
(2)如图二,过点C作CD⊥AC交x轴于点D,求点D的坐标.
题型:解答题  难度:中档

答案

(1)∵C(0,3)
∴OC=3,
∵△ABC的面积为6,
∴AB=4,
∵OA、OB的长分别是关于x的一元二次方程x2-4mx+m2+2=0的两根,
∴OA+OB=4m=4
∴m=1
∴一元二次方程x2-4mx+m2+2=0可化为:x2-4x+3=0
解得:x1=1 x2=3
即OA=1,OB=3
在Rt△OBC中,OB=OC
∴∠ABC=45°;

(2)设D点坐标为(x,0)
在Rt△ACD中
AC2+CD2=AD2
即:(1-0)2+(0-3)2+(x-0)2+(0-3)2=(1+x)2
解得:x=9
即:D点坐标为(9,0).

据专家权威分析,试题“如图,点A为x轴负半轴上一点,点B为x轴正半轴上一点,OA,OB(OA?..”主要考查你对  一元二次方程的应用  等考点的理解。关于这些考点的“档案”如下:

一元二次方程的应用

考点名称:一元二次方程的应用

  • 建立一元二次方程模型进行求解,把得到的答案带回实际问题中检验是否合理,来解决实际问题,如打折、营销、增长率问题等。

  •  

  • 列一元二次次方程组解应用题的一般步骤:
    可概括为“审、设、列、解、答”五步,即:
    (1)审:是指读懂题意,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的关系;
    (2)设:是指设未知数;
    (3)列:就是列方程,这是非常重要的一步,一般先找出能够表达应用题全部含义的一个等量关系,然后列代数式表示等量关系中的各个量,就得到含有未知数的等式,即方程;
    (4)解:解这个方程,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
    提示:
    ①列方程解应用题时,要善于将普通语言化为数学语言,审题时,要特别注意关键词语,如“多、少、快、慢、和、差、倍、分、超过、剩余、增加、减少”等等,此外,还要掌握一些常用的公式或特殊的等量关系,如特殊图形的面积公式、行程问题、工程问题、增长率问题中的一些特殊关系等。
    ②注重解法选择与验根,在具体问题中要注意恰当的选择解法,以保证解题过程简单流畅,特别注意要对方程的解进行检验,根据实际情况作出正确取舍,以保证结论的准确性。

    常见题型公式:
    工程问题:    
    工程问题中的三个量及其关系为:工作总量=工作效率×工作时间  
    经常在题目中未给出工作总量时,设工作总量为单位1。

    利润赢亏问题 
    销售问题中常出现的量有:进价、售价、标价、利润等 
    有关关系式:
    商品利润=商品售价—商品进价=商品标价×折扣率—商品进价 
    商品利润率=商品利润/商品进价            
    商品售价=商品标价×折扣率 

    存款利率问题:
    利息=本金×利率×期数      
    本息和=本金+利息      
    利息税=利息×税率(20%)

    行程问题:
    基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间,
    路程=速度×时间。
    ①相遇问题:快行距+慢行距=原距;
    ②追及问题:快行距-慢行距=原距;
    ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度,
    逆水(风)速度=静水(风)速度-水流(风)速度

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐