有四种边长都相等的正三角形、正方形、正五边形、正六边形瓷砖,如果任意用其中两种瓷砖组合密铺地面,在不切割的情况下,能镶嵌成平面图案的概率是______.-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

有四种边长都相等的正三角形、正方形、正五边形、正六边形瓷砖,如果任意用其中两种瓷砖组合密铺地面,在不切割的情况下,能镶嵌成平面图案的概率是______.
题型:填空题  难度:中档

答案

用A,B,C,D表示正三角形、正方形、正五边形、正六边形瓷砖,
画树状图得:



∵共12种情况,有六种是相同的,故只有6种情况,其中有2种符合情况,
P(镶嵌成平面图案)=
1
3

故答案为:
1
3

据专家权威分析,试题“有四种边长都相等的正三角形、正方形、正五边形、正六边形瓷砖,..”主要考查你对  概率的意义,平面图形的平铺和镶嵌  等考点的理解。关于这些考点的“档案”如下:

概率的意义平面图形的平铺和镶嵌

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:平面图形的平铺和镶嵌

  • 平面镶嵌:
    用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地拼接在一起,这就是平面镶嵌。
    用相同的正多边形镶嵌:只用一种多边形时,可以进行镶嵌的是三角形、四边形或正六边形。
    用不同的正多边形镶嵌:
    (1)用正三角形和正六边形能够进行平面镶嵌;
    (2)用正十二边形、正六边形,正方形能够进行平面镶嵌。