如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷一枚均匀的正四面体骰子(它有四个顶点,各顶点的点数分别是1至4这四个数字中一个),每个顶点朝上的机会是相同的,连续抛掷两次,将骰子朝上的顶点数作为直角坐标中P点的坐标)第一次的点数作横坐标,第二次的点数作纵坐标).
(1)求P点落在正方形ABCD面上(含正方形内部和边界)的概率.
(2)将正方形ABCD平移整数个单位,则是否存在一种平移,使点P落在正方形ABCD
面上的概率为
3
4
;若存在,指出其中的一种平移方式;若不存在,请说明理由.

题型:解答题  难度:中档

答案

(1)根据题意,点P的横坐标有数字1,2,3,4四种选择,点P的纵坐标也有数字1,2,3,4四种选择,
所以构成点P的坐标共有4×4=16种情况.
如下图所示:



其中点P的(1,1),(1,2),(2,1),(2,2)四种情况将落在正方形ABCD面上,
故所求的概率为
4
16
=
1
4


(2)因为要使点P落在正方形ABCD面上的概率为
3
4
=
12
16
1
4
,所以只能将正方形ABCD向上或向右整数个单位平移,且使点P落在正方形面上的数目为12.
∴存在满足题设要求的平移方式:先将正方形ABCD上移2个单位,后右移1个单位(先右后上亦可);
或先将正方形ABCD上移1个单位,后右移2个单位(先右后上亦可).

据专家权威分析,试题“如图,放在直角坐标系中的正方形ABCD边长为4,现做如下实验:抛掷..”主要考查你对  概率的意义,正方形,正方形的性质,正方形的判定,用坐标表示位置,平移  等考点的理解。关于这些考点的“档案”如下:

概率的意义正方形,正方形的性质,正方形的判定用坐标表示位置平移

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:正方形,正方形的性质,正方形的判定

  • 正方形的定义:
    有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
    特殊的长方形。
    四条边都相等且四个角都是直角的四边形叫做正方形。
    有一组邻边相等的矩形是正方形。
    有一个角为直角的菱形是正方形。
    对角线平分且相等,并且对角线互相垂直的四边形为正方形。
    对角线相等的菱形是正方形。

  • 正方形的性质:
    1、边:两组对边分别平行;四条边都相等;相邻边互相垂直
    2、内角:四个角都是90°;
    3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;
    4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);
    5、正方形具有平行四边形、菱形、矩形的一切性质;
    6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;
    正方形的两条对角线把正方形分成四个全等的等腰直角三角形;
    7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;
    正方形外接圆面积大约是正方形面积的157%。
    8、正方形是特殊的长方形。

  • 正方形的判定:
    判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。
    1:对角线相等的菱形是正方形。
    2:有一个角为直角的菱形是正方形。
    3:对角线互相垂直的矩形是正方形。
    4:一组邻边相等的矩形是正方形。
    5:一组邻边相等且有一个角是直角的平行四边形是正方形。
    6:对角线互相垂直且相等的平行四边形是正方形。
    7:对角线相等且互相垂直平分的四边形是正方形。
    8:一组邻边相等,有三个角是直角的四边形是正方形。
    9:既是菱形又是矩形的四边形是正方形。

    有关计算公式:
    若S为正方形的面积,C为正方形的周长,a为正方形的边长,则
    正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;
    正方形周长计算公式: C=4a 。
    S正方形=。(正方形边长为a,对角线长为b)

考点名称:用坐标表示位置

  • 点的坐标的概念:
    点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
    平面内点的坐标是有序实数对,当a≠b时,(a,b)和(b,a)是两个不同点的坐标。

  • 各象限内点的坐标的特征 :
    点P(x,y)在第一象限;点P(x,y)在第二象限
    点P(x,y)在第三象限;点P(x,y)在第四象限

    坐标轴上的点的特征:
    点P(x,y)在x轴上y=0,x为任意实数
    点P(x,y)在y轴上x=0,y为任意实数
    点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)。

    点P(x,y)到坐标轴及原点的距离:
    (1)点P(x,y)到x轴的距离等于|y|;
    (2)点P(x,y)到y轴的距离等于|x|;
    (3)点P(x,y)到原点的距离等于

  • 坐标表示位置步骤:
    利用平面直角坐标系绘制区域内一些地点分布情况的平面图的过程如下:
    (1)建立坐标系,选择一个适当的参照点为原点,确定X轴、y轴的正方向;
    (2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
    (3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

考点名称:平移

  • 定义:
    将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

  • 平移基本性质:
    经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
    平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
    (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
    (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
    (3)多次连续平移相当于一次平移。
    (4)偶数次对称后的图形等于平移后的图形。
    (5)平移是由方向和距离决定的。
    这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移
    平移的条件:确定一个平移运动的条件是平移的方向和距离。

    平移的三个要点
    1 原来的图形的形状和大小和平移后的图形是全等的。
    2 平移的方向。(东南西北,上下左右,东偏南n度,东偏北n度,西偏南n度,西偏北n度)
    3 平移的距离。(长度,如7厘米,8毫米等)

    平移作用:
    1.通过简单的平移可以构造精美的图形。也就是花边,通常用于装饰,过程就是复制-平移-粘贴。
    2.平移长于平行线有关,平移可以将一个角,一条线段,一个图形平移到另一个位置,是分散的条件集中到一个图形上,使问题得到解决。

  • 平移作图的步骤:
    (1)找出能表示图形的关键点;
    (2)确定平移的方向和距离;
    (3)按平移的方向和距离确定关键点平移后的对应点;
    (4)按原图的顺序,连结各对应点。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐