下列叙述正确的是()A.调查一批新型节能灯泡的使用寿命,采用全面调查B.商场经理要了解哪种衬衫型号最畅销,他最关注的是衬衫型号的中位数C.为了了解我市参加中考的12000名学-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

下列叙述正确的是(  )
A.调查一批新型节能灯泡的使用寿命,采用全面调查
B.商场经理要了解哪种衬衫型号最畅销,他最关注的是衬衫型号的中位数
C.为了了解我市参加中考的12000名学生的视力情况,抽查了500名学生的视力进行统计分析,每名学生是总体的一个个体
D.某种彩票中奖概率是1%,买1张这种彩票可能会中奖.
题型:单选题  难度:中档

答案

A、调查一批新型节能灯泡的使用寿命,具有破坏性,只能采用抽样调查,故本选项错误;
B、商场经理要了解哪种衬衫型号最畅销,他应该最关注衬衫型号的众数,故本选项错误;
C、每名学生的视力情况是总体的一个个体,故本选项错误;
D、概率表示发生的机会的大小,机会小也有可能发生,所以买1张这种彩票有可能会中奖,故本选项正确.
故选D.

据专家权威分析,试题“下列叙述正确的是()A.调查一批新型节能灯泡的使用寿命,采用全面..”主要考查你对  概率的意义,全面调查和抽样调查 ,总体、个体、样本、样本容量  等考点的理解。关于这些考点的“档案”如下:

概率的意义全面调查和抽样调查 总体、个体、样本、样本容量

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:全面调查和抽样调查

  • 全面调查:
    就是对需要调查的对象进行逐个调查。这种方法所得资料较为全面可靠,但调查花费的人力、物力、财力较多,且调查时间较长,不适合一般企业的要求。全面调查只在产品销售范围很窄或用户很少的情况下可以采用。对品种多、产量大、销售范围广的产品,就不适用全面调查,而可以采用抽样调查。
    抽样调查:
    是从需要调查对象的总体中,抽取若干个个体即样本进行调查,并根据调查的情况推断总体的特征的一种调查方法。
    抽样调查可以把调查对象集中在少数样本上,并获得与全面调查相近的结果。这是一种较经济的调查方法,因而被广泛采用。抽样调查是从研究对象的总体中抽取一部分个体作为样本进行调查,据此推断有关总体的数字特征。

  • 调查好处与特点:
    1.全面调查:对需要调查的对象进行逐个调查。
    好处:所得资料较为全面可靠。
    特点:调查花费的人力、物力、财力较多,且调查时间较长,全面调查只在样本很少的情况下适合采用。

    2.抽样调查:是一种非全面调查,它是从全部调查研究对象中,抽选一部分单位进行调查,并据以对全部调查研究对象作出估计和推断的一种调查方法。
    好处:耗费的人力,物力,财力少,大量节约调查时间。
    特点:
    1、按随机原则抽选样本。
    2、总体中每一个单位都有一定的概率被抽中。
    3、可以用一定的概率来保证将误差控制在规定的范围之内。
    4、适合样本数量较多的情况下采用。

  • 全面调查和抽样调查关系:
    全面调查和抽样调查是按调查对象范围不同划分的调查方式。
    全面调查是对调查对象中的所有单位全部加以调查,通过基层单位按照一定的报表填报要求进行逐一登记、逐级上报、层层汇总,最后取得调查结果的一种调查方式,如人口普查、经济普查等。
    抽样调查是一种非全面调查,它是从研究的总体中按随机原则抽取部分样本单位进行调查,并根据样本单位的调查结果来推断总体,以达到认识总体的一种统计调查方式。

    抽样调查用样本指标代表总体指标不可避免会产生误差,抽样推断虽然会有抽样误差(不包括登记误差和系统性误差),但只要严格遵守随机原则,所选的样本结构与总体结构相同,或者两者分布一致,就可以运用数学公式计算抽样误差。随机抽样产生的误差,只要确定其具体的数量界限,可以通过抽样程序设计加以控制。因此抽样调查的结果是有可靠的科学依据的。

    抽样调查与全面调查有着相辅相成的关系。在实际运用中,没有必要进行全面调查和不可能进行全面调查时宜采用抽样调查。
    抽样调查的优点:
    一是由于只从总体中抽取一部分样本进行调查,工作量小,所以比全面调查节省人力、物力、财力,比较经济;
    二是可以及时取得调查资料,提高数据的时效性;
    三是数据质量有保证,由于抽样调查一般是自上而下组织调查,直接派员深入实际抽取样本并推断总体,可以减少人为因素干扰,只要取样、推断方法科学,均有利于提高数据的质量;
    第四,调查方法灵活,如实际工作中使用较多的问卷调查、入户调查、电话调查等,适应面广,特别适于对点多面广的总体作调查。

考点名称:总体、个体、样本、样本容量

  • 掌握总体、个体、样本,样本容量的概念,能正确区分总体、个体、样本、样本容量
    总体、个体、样本、样本容量,这四个概念之间其实有其内在联系,
    总体:我们把所要考察的对象的全体叫做总体;
    个体:把组成总体的每一个考察对象叫做个体;
    样本:从总体中取出的一部分个体叫做这个总体的一个样本;
    样本容量:一个样本包含的个体的数量叫做这个样本的容量。
    我们在区分这四个概念时,首先找出考察的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量。