如图,正方形ABCD内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是______.-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

如图,正方形ABCD内接于⊙O,⊙O的直径为

2
分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD内的概率是______.

题型:填空题  难度:偏易

答案

因为⊙O的直径为

2
分米,则半径为

2
2
分米,⊙O的面积为π(

2
2
2=
π
2
平方分米;
正方形的边长为

(

2
2
)2+(

2
2
)2
=1分米,面积为1平方分米;
因为豆子落在圆内每一个地方是均等的,
所以P(豆子落在正方形ABCD内)=
1
π
2
=
2
π

故答案为:
2
π

据专家权威分析,试题“如图,正方形ABCD内接于⊙O,⊙O的直径为2分米,若在这个圆面上随意..”主要考查你对  概率的意义,正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算)  等考点的理解。关于这些考点的“档案”如下:

概率的意义正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算)

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:正多边形和圆(内角,外角,中心角,边心距,边长,周长,面积的计算)

  • 正多边形的定义:
    各边相等,各角也相等的多边形叫做正多边形。

    正多边形和圆的关系:
    把一个圆分成n等份,依次连接各分点所得的多边形是这个圆的内接正n边形,这个圆叫这个正n边形的外接圆。

    与正多边形有关的概念:
    (1)正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。
    (2)正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。
    (3)正多边形的边心距:正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
    (4)正多边形的中心角:正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。
    注:正n边形有n个中心角,这n个中心角相等且每个中心角为

  • 圆的计算公式:
    1.圆的边长即的周长C=2πr=或C=πd
    2.圆的面积S=πr2
    3.扇形弧长L=圆心角(弧度制)· r = n°πr/180°(n为圆心角)
    4.扇形面积S=nπ r2/360=Lr/2(L为扇形的弧长)
    5.圆的直径 d=2r
    6.圆锥侧面积 S=πrl(l为母线长)
    7.圆锥底面半径 r=n°/360°L(L为母线长)(r为底面半径)
    8.圆心角所对的弧的度数等于弧所对的圆心角的度数;
    9.圆周角的度数等于圆心角的度数的一半;
    10.圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半;
    11.扇形圆心角n=(180L)/(πr)(度)。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐