一副扑克牌(无大王、小王),从中任意取出一张,共有52种等可能的结果.(1)列出抽到K的所有可能的结果;(2)求抽到红桃K的概率;(3)求抽到K的概率;(4)求抽到红桃的概率;(5)若-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

一副扑克牌(无大王、小王),从中任意取出一张,共有52种等可能的结果.
(1)列出抽到K的所有可能的结果;
(2)求抽到红桃K的概率;
(3)求抽到K的概率;
(4)求抽到红桃的概率;
(5)若抽到红桃你赢,抽不到红桃老师赢,你认为这个游戏公平吗?为什么?
题型:解答题  难度:中档

答案

(1)抽到K的所有可能结果为:红桃K,黑桃K,方片K,梅花K;
(2)P(抽到红桃K)=
1
52

(3)P(抽到K)=
1
13

(4)P(抽到红桃)=
1
4

(5)P(抽到红桃)=
1
4
,P(抽不到红桃)=
3
4

所以游戏不公平.

据专家权威分析,试题“一副扑克牌(无大王、小王),从中任意取出一张,共有52种等可能的..”主要考查你对  概率的意义,利用概率解决问题  等考点的理解。关于这些考点的“档案”如下:

概率的意义利用概率解决问题

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:利用概率解决问题

  • 应用概率可以解决以下问题:
    (1)彩票中奖率的问题;
    (2)抽样检测中产品合格率的问题;
    (3)天气预报降水的概率;
    (4)抛硬币、掷骰字的问题;
    (5)圆盘分几个区域,分别涂色,转到哪个颜色的区域的概率;
    (6)有刚回及无放回的摸球问题。
    概率的应用情况远不止于这些,还有很多类似情况,在解决这类问题时,要充分理解题意,找到切入点,就能轻松的解决问题。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐