盒中白色、黑色棋子各x颗,y颗.从中随机取出一颗棋子,取得白色棋子的概率是0.4;如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是0.25,则原来有白色棋子()A.2B.4C.6D-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

盒中白色、黑色棋子各x颗,y颗.从中随机取出一颗棋子,取得白色棋子的概率是0.4;如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是0.25,则原来有白色棋子(  )
A.2B.4C.6D.8
题型:单选题  难度:偏易

答案

∵取得白色棋子的概率是0.4,
x
x+y
=0.4,
∵再往盒中放进6颗黑色棋子,取得白色棋子的概率是0.大5,
x
x+y+6
=0.大5,
联立方程组

x
x+y
=0.4
x
x+y+6
=0.大5

解得x=4,y=6.
∴原来盒中有白色棋子4颗.
故选B.

据专家权威分析,试题“盒中白色、黑色棋子各x颗,y颗.从中随机取出一颗棋子,取得白色棋..”主要考查你对  概率的意义  等考点的理解。关于这些考点的“档案”如下:

概率的意义

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。