在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好是四边形的概率是______.-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,恰好是四边形的概率是______.
题型:填空题  难度:偏易

答案

∵等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中,任取其中一个图形,
这6个图形出现的机会相同,6个图形中是四边形的有正方形,矩形、等腰梯形三个,
∴任取其中一个图形,恰好是四边形的概率是:
3
6
=
1
2

故答案为:
1
2

据专家权威分析,试题“在“等边三角形、正方形、等腰梯形、正五边形、矩形、正六边形”中..”主要考查你对  概率的意义,多边形   等考点的理解。关于这些考点的“档案”如下:

概率的意义多边形

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:多边形

  • 定义:
    在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。如果一个图形有n条线段组成,那么这个多边形就叫做n边形,如四边形、五边形、六边形等。
    多边形的内角:相邻两边组成的角叫做多边形的内角。
    多边形的对角线:连结多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  • 多边形构成要素:
    组成多边形的线段至少有3条,三角形是最简单的多边形。
    组成多边形的每一条线段叫做多边形的边;
    相邻的两条线段的公共端点叫做多边形的顶点;
    多边形相邻两边所成的角叫做多边形的内角;
    连接多边形的两个不相邻顶点的线段叫做多边形的对角线。
    多边形内角的一边与另一边反向延长线所组成的角叫做多边形的外角。

    多边形分类:
    在多边形的每一个定点处取这个多边形的一个外角,它们的和叫做多边形的外角和。
    多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。
    多边形也可以分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形
    (此定理只适用于凸多边形,即平面多边形,空间多边形不适用)广义的多边形也包括五角星等图形。

  • 多边形定理:
    1、内角和定理:
    n边形的内角和等于(n-2)x180°
    可逆用:
    ·n边形的边=(内角和÷180°)+2
    ·过n边形一个顶点有(n-3)条对角线
    ·因为每个顶点和它自己及相邻的两个顶点都不能做对角线,所以n边形的每个顶点只能和n-3个其他的顶点之间做对角线,又因为每一条对角线都要连结两个顶点,所以要除以2。 
    n边形共有n×(n-3)÷2个对角线
    · n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形
    推论:
    ·任意凸形多边形的外角和都等于360°。
    ·多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3)
    ·在平面内,各边相等,各内角也都相等的多边形叫做正多边形。【两个条件必须同时满足
    反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)】

    2、外角和定理:
    n边形外角和等于n·180°-(n-2)·180°=360°
    多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐