掷两枚硬币,求下列事件的概率.(1)两枚硬币全部正面朝上;(2)两枚硬币全部反面朝上;(3)一枚硬币正面朝上,一枚硬币方面朝上.-数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

掷两枚硬币,求下列事件的概率.
(1)两枚硬币全部正面朝上;
(2)两枚硬币全部反面朝上;
(3)一枚硬币正面朝上,一枚硬币方面朝上.
题型:解答题  难度:中档

答案

我们把掷两枚硬币所能产生的结果全部列举出来,它们是:正正,正反,反正,反反
所有结果共有4种,
(1)所有结果中,满足两枚硬币全部是正面朝上(记为事件A)的结果只有一种,所有P(A)=
1
4

(2)同理:两枚硬币全部方面朝上的概率是P=
1
4

(3)同理:一枚硬币正面朝上,一枚硬币方面朝上的概率是P=
1
2

据专家权威分析,试题“掷两枚硬币,求下列事件的概率.(1)两枚硬币全部正面朝上;(2)两枚..”主要考查你对  概率的意义  等考点的理解。关于这些考点的“档案”如下:

概率的意义

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐