小张和小罗玩一种转盘游戏,如图是两个完全相同的转盘,转盘一被分成面积相等的三个扇形,用数字“1”、“2”、“3”表示,转盘二被分成面积相等的四个扇形,用数字“1”、“2”、“3”、-九年级数学

首页 > 考试 > 数学 > 初中数学 > 概率的意义/2019-05-10 / 加入收藏 / 阅读 [打印]

题文

小张和小罗玩一种转盘游戏,如图是两个完全相同的转盘,转盘一被分成面积相等的三个扇形,用数字“1”、“2”、“3”表示,转盘二被分成面积相等的四个扇形,用数字“1”、“2”、“3”、“4”表示,固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字之积为偶数,则小张获胜;若两指针所指数字之积为奇数,则小罗获胜;若其中一个指针指向扇形的分界线,则都重转一次.你认为游戏是否公平?请说明理由.若不公平,请你修改游戏规则,使游戏公平.

题型:解答题  难度:中档

答案

不公平;可解得P(积为偶数)≠P(积为奇数),所以游戏不公平;若两指针所指数字之和为偶数,则小张获胜;若两指针所指数字之和为奇数,则小罗获胜


试题分析:不公平.  
理由:画树状图得:
  
∵共有12种等可能的结果,所指数字之积为偶数的有8种情况,所指数字之积为奇数有4种情况,
∴P(积为偶数)=  
P(积为奇数)= 
∵P(积为偶数)≠P(积为奇数).
∴游戏不公平;  
可改为:若两指针所指数字之和为偶数,则小张获胜;若两指针所指数字之和为奇数,则小罗获胜;P(和为偶数)=P(和为奇数)=  
点评:本题考查概率,要求考生会画树状图或者列表,会画树状图或者列表是本题的关键,概率的题相对比较简单,不会好难

据专家权威分析,试题“小张和小罗玩一种转盘游戏,如图是两个完全相同的转盘,转盘一被..”主要考查你对  概率的意义,随机事件,必然事件,列举法求概率  等考点的理解。关于这些考点的“档案”如下:

概率的意义随机事件必然事件列举法求概率

考点名称:概率的意义

  • 概率的意义:
    一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率,记作P(A)=p,概率从某种数量上刻画一个不确定事件发生的可能性的大小。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:必然事件的概率为1,不可能事件的概率为0,随机事件A的概率为0<P(A)<1。
    注:(1)在n试验中,事件A发生的频率m满足0≤m≤n,所以0≤≤1,故0≤P(A)≤1;
    (2)P(A)=0表示事件A是不可能发生的事件,P(A)=1表示事件A是必然发生的事件;
    (3)概率越大,表示事件发生的可能性越大;概率越小,表示事件发生的可能性越小;
    (4)人们通常对随机事件进行大量的反复试验来研究概率,一般大量试验事件发生的频率可作为概率的估计值。

考点名称:随机事件

  • 随机事件:
    事件可分为确定事件和不确定事件,不确定事件又称为随机事件。
    在一定条件下,可能发生也可能不发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。
    事件的概率:随机事件A的概率为0<P(A)<1。

  • 随机事件特点:
    1.可以在相同的条件下重复进行;
    2.每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;
    3.进行一次试验之前不能确定哪一个结果会出现。
    注意:
    ①随机事件发生与否,事先是不能确定的;
    ②必然事件发生的机会是1;不可能事件发生的机会是0;随机事件发生的机会在0-1之间。
    ③要判断一个事件是必然事件、随机事件、还是不可能事件,要从定义出发。

考点名称:必然事件

  • 必然事件:
    事件可分为确定事件和不确定事件,确定事件可分为必然事件和不可能事件。
    在一定的条件下,一定发生的事件。
    事件和概率的表示方法:一般地,事件用英文大写字母A,B,C,…,表示事件A的概率p,可记为P(A)=P。必然事件的概率为1。

考点名称:列举法求概率

  • 可能条件下概率的意义:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=
    等可能条件下概率的特征:
    (1)对于每一次试验中所有可能出现的结果都是有限的;
    (2)每一个结果出现的可能性相等。

  • 概率的计算方法:
    (1)列举法(列表或画树状图),
    (2)公式法;
    列表法或树状图这两种举例法,都可以帮助我们不重不漏的列出所以可能的结果。

    列表法
    (1)定义:用列出表格的方法来分析和求解某些事件的概率的方法叫做列表法。
    (2)列表法的应用场合
    当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。

    树状图法
    (1)定义:通过列树状图列出某事件的所有可能的结果,求出其概率的方法叫做树状图法。
    (2)运用树状图法求概率的条件
    当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐