已知抛物线,(1)若,,求该抛物线与轴公共点的坐标;(2)若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;(3)若,且时,对应的;时,对应的,试判断当时,抛物线与-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-20 / 加入收藏 / 阅读 [打印]
,  
∴抛物线轴有两个公共点,顶点在轴下方.········ 8分
又该抛物线的对称轴



又由已知时,时,,观察图象,
可知在范围内,该抛物线与轴有两个公共点. ············ 11分

(1)通过,求出抛物线的解析式,从而求得与轴公共点的坐标
(2)从当时和当时分别进行分析,求的取值范围
(3)通过关于的一元二次方程的判别式,确定抛物线与轴有两个公共点,顶点在轴下方

据专家权威分析,试题“已知抛物线,(1)若,,求该抛物线与轴公共点的坐标;(2)若,且当..”主要考查你对  二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用

考点名称:二次函数的定义

  • 定义:
    一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
    ①所谓二次函数就是说自变量最高次数是2;
    ②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
    ③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。

  • 二次函数的解析式有三种形式:
    (1)一般式:(a,b,c是常数,a≠0);
    (2)顶点式: (a,h,k是常数,a≠0)
    (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

    二次函数的一般形式的结构特征:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐