如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,-),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的-九年级数学
题文
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,-),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边). (1)求抛物线的解析式及A,B两点的坐标; (2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由; (3)在以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE的解析式. |
答案
(1)y=x2-x+2 A(2,0),B(6,0) (2)存在,2 (3)y=-x+2 |
解:(1)如图, 由题意,设抛物线的解析式为y=a(x-4)2-(a≠0) ∵抛物线经过(0,2) ∴a(0-4)2-=2 解得:a=, ∴y=(x-4)2-, 即:y=x2-x+2 当y=0时,x2-x+2=0 解得:x=2或x=6 ∴A(2,0),B(6,0); (2)存在, 如图2,由(1)知:抛物线的对称轴l为x=4, 因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小 ∵B(6,0),C(0,2) ∴OB=6,OC=2 ∴BC=2, ∴AP+CP=BC=2, ∴AP+CP的最小值为2; (3)如图3,连接ME, ∵CE是⊙M的切线 ∴ME⊥CE,∠CEM=90° 由题意,得OC=ME=2,∠ODC=∠MDE ∵在△COD与△MED中 , ∴△COD≌△MED(AAS), ∴OD=DE,DC=DM 设OD=x则CD=DM=OM-OD=4-x 则RT△COD中,OD2+OC2=CD2, ∴x2+22=(4-x)2 ∴x=, ∴D(,0) 设直线CE的解析式为y=kx+b ∵直线CE过C(0,2),D(,0)两点, 则, 解得:。 ∴直线CE的解析式为y=-x+2。 |
据专家权威分析,试题“如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,-),且与y轴交..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:二次函数y=2(x-1)-1的顶点是().A.(1,-1)B.(1,1)C.(-1,1)D.(2,-l)-九年级数学
下一篇:如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.点D、E、F分别是边AB,BC,AC的中点,连接DE,DF,动点P,Q分别从点A、B同时出发,运动速度均为1cm/s,点P沿AFD的方向运动到点-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |