如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.(1)求该抛物线的解析式.(2)若过点A(﹣1,0)的-九年级数学
题文
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴. (1)求该抛物线的解析式. (2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式. (3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标. |
答案
(1) y=x2-4x+3;(2) y=x+或y=?x?;(3) (2,1.5),(2,-1.5),(2,-6),(2,6). |
试题分析:(1)根据函数图象过x轴上两点M(1,0)和N(3,0),设出函数两点式,将D(0,3)代入解析式,求出a的值,即可求出函数解析式; (2)根据过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,再由AC=3,BC=4,求出B点坐标,利用待定系数法即可求出一次函数解析式; (3)设⊙P与AB相切于点Q,与x轴相切于点C;证出△ABC∽△PBQ,得到,求出PC的长,即可求出P点坐标. 试题解析:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3), ∴假设二次函数解析式为:y=a(x-1)(x-3), 将D(0,3),代入y=a(x-1)(x-3), 得:3=3a,∴a=1, ∴抛物线的解析式为:y=a(x-1)(x-3)=x2-4x+3; (2)∵过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6, ∴AC×BC=6, ∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点, ∴二次函数对称轴为x=2, ∴AC=3, ∴BC=4, ∴B点坐标为:(2,4)或(2,-4), 一次函数解析式为;y=kx+b,当点B为(2,4)时, ∴ ,解得: , ∴y=x+; 当点B为(2,-4)时,,解得, ∴y=?x?, ∴直线AB的解析式为:y=x+或y=?x?; (3)∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切, 设⊙P与AB相切于点Q,与x轴相切于点C; ∴PQ⊥AB,AQ=AC,PQ=PC, ∵AC=1+2=3,BC=4, ∴AB=5,AQ=3, ∴BQ=2, ∵∠QBP=∠ABC, ∠BQP=∠ACB, ∴△ABC∽△PBQ, ∴, ∴ , ∴PC=1.5, P点坐标为:(2,1.5), 同理可得(2,-1.5),(2,-6),(2,6). 考点: 二次函数综合题. |
据专家权威分析,试题“如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,已知二次函数y=ax2+bx+3的图象过点A(-1,0),对称轴为过点(1,0)且与y轴平行的直线.(1)求点B的坐标(2)求该二次函数的关系式;(3)结合图象,解答下列问题:①当x取什么值-九年级数学
下一篇:某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.(1)求y与x之间-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |