如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.(1)求该抛物线的解析式.(2)若过点A(﹣1,0)的-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-21 / 加入收藏 / 阅读 [打印]

题文

如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),直线l是抛物线的对称轴.

(1)求该抛物线的解析式.
(2)若过点A(﹣1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,求此直线的解析式.
(3)点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,求点P的坐标.

题型:解答题  难度:中档

答案

(1) y=x2-4x+3;(2) y=x+或y=?x?;(3) (2,1.5),(2,-1.5),(2,-6),(2,6).


试题分析:(1)根据函数图象过x轴上两点M(1,0)和N(3,0),设出函数两点式,将D(0,3)代入解析式,求出a的值,即可求出函数解析式;
(2)根据过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,再由AC=3,BC=4,求出B点坐标,利用待定系数法即可求出一次函数解析式;
(3)设⊙P与AB相切于点Q,与x轴相切于点C;证出△ABC∽△PBQ,得到,求出PC的长,即可求出P点坐标.
试题解析:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,且与y轴交于D(0,3),
∴假设二次函数解析式为:y=a(x-1)(x-3),
将D(0,3),代入y=a(x-1)(x-3),
得:3=3a,∴a=1,
∴抛物线的解析式为:y=a(x-1)(x-3)=x2-4x+3;
(2)∵过点A(-1,0)的直线AB与抛物线的对称轴和x轴围成的三角形面积为6,
AC×BC=6,
∵抛物线y=ax2+bx+c(a≠0)的图象经过M(1,0)和N(3,0)两点,
∴二次函数对称轴为x=2,
∴AC=3,
∴BC=4,
∴B点坐标为:(2,4)或(2,-4),
一次函数解析式为;y=kx+b,当点B为(2,4)时,
,解得: ,
∴y=x+
当点B为(2,-4)时,,解得
∴y=?x?
∴直线AB的解析式为:y=x+或y=?x?
(3)∵当点P在抛物线的对称轴上,⊙P与直线AB和x轴都相切,
设⊙P与AB相切于点Q,与x轴相切于点C;
∴PQ⊥AB,AQ=AC,PQ=PC,
∵AC=1+2=3,BC=4,
∴AB=5,AQ=3,
∴BQ=2,
∵∠QBP=∠ABC,
∠BQP=∠ACB,
∴△ABC∽△PBQ,


∴PC=1.5,
P点坐标为:(2,1.5),
同理可得(2,-1.5),(2,-6),(2,6).
考点: 二次函数综合题.

据专家权威分析,试题“如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的图象经过M(1..”主要考查你对  二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用

考点名称:二次函数的定义

  • 定义:
    一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
    ①所谓二次函数就是说自变量最高次数是2;
    ②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
    ③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐