已知:M、N两点关于y轴对称,且点M在双曲线上,点N在直线上,设点M的坐标为,则二次函数()A.有最大值,最大值为B.有最大值,最大值为C.有最小值,最小值为D.有最小值,最小值为-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-21 / 加入收藏 / 阅读 [打印]

抛物线的主要特征:
①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
②有对称轴;
③有顶点;
④c 表示抛物线与y轴的交点坐标:(0,c)。

  • 二次函数图像性质:
    轴对称:

    二次函数图像是轴对称图形。对称轴为直线x=-b/2a
    对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
    特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
    a,b同号,对称轴在y轴左侧
    b=0,对称轴是y轴
    a,b异号,对称轴在y轴右侧

    顶点:
    二次函数图像有一个顶点P,坐标为P ( h,k )
    当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
    h=-b/2a, k=(4ac-b^2)/4a。

    开口:
    二次项系数a决定二次函数图像的开口方向和大小。
    当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
    |a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

  • 考点名称:二次函数的最大值和最小值

    • 二次函数的最值:
      1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
      当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
      也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
      2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。

    考点名称:求二次函数的解析式及二次函数的应用

    • 求二次函数的解析式:
      最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
      (1)已知抛物线上三点的坐标,一般选用一般式;
      (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
      (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
      (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

      二次函数的应用:
      (1)应用二次函数才解决实际问题的一般思路:
      理解题意;
      建立数学模型;
      解决题目提出的问题。
      (2)应用二次函数求实际问题中的最值:
      即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
      求最值时,要注意求得答案要符合实际问题。

    • 二次函数的三种表达形式:
      ①一般式:
      y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
      把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

      ②顶点式:
      y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
      有时题目会指出让你用配方法把一般式化成顶点式。
      例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
      解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
      注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
      具体可分为下面几种情况:
      当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
      当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
      当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
      当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
      当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
      当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

      ③交点式:
      y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐