如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.(1)求抛物线的解析式及其顶点Q的坐标;(2)在该抛物线的对称轴上求一点P,使得△PAC的周长-九年级数学
题文
如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C. (1)求抛物线的解析式及其顶点Q的坐标; (2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标; (3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E. ①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由. ②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由. |
答案
(1)y-(x-2)2+9,Q(2,9);(2)(2,3);(3) |
试题分析:(1)将A(-1,0)、B(5,0)分别代入y=-x2+bx+c中即可确定b、c的值,然后配方后即可确定其顶点坐标; (2)连接BC,交对称轴于点P,连接AP、AC.求得C点的坐标后然后确定直线BC的解析式,最后求得其与x=2与直线BC的交点坐标即为点P的坐标; (3)①设D(t,-t2+4t+5),设折线D-E-O的长度为L,求得L的最大值后与当点D与Q重合时L=9+2=11<相比较即可得到答案; ②假设四边形DCEB为平行四边形,则可得到EF=DF,CF=BF.然后根据DE∥y轴求得DF,得到DF>EF,这与EF=DF相矛盾,从而否定是平行四边形. (1)将A(-1,0)、B(5,0)分别代入y=-x2+bx+c中,得 ,解得 ∴y=-x2+4x+5. ∵y=-x2+4x+5=-(x-2)2+9, ∴Q(2,9). (2)如图1,连接BC,交对称轴于点P,连接AP、AC. ∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小. ∵点A关于对称轴x=2的对称点是点B(5,0),抛物线y=-x2+4x+5与y轴交点C的坐标为(0,5). ∴由几何知识可知,PA+PC=PB+PC为最小. 设直线BC的解析式为y=kx+5,将B(5,0)代入5k+5=0,得k=-1, ∴y=-x+5, ∴当x=2时,y=3, ∴点P的坐标为(2,3). (3)①这个同学的说法不正确. ∵设D(t,-t2+4t+5),设折线D-E-O的长度为L,则L=?t2+4t+5+t=?t2+5t+5=?(t?)2+, ∵a<0, ∴当t=时,L最大值=. 而当点D与Q重合时,L=9+2=11<, ∴该该同学的说法不正确. ②四边形DCEB不能为平行四边形. 如图2,若四边形DCEB为平行四边形,则EF=DF,CF=BF. ∵DE∥y轴, ∴,即OE=BE=2.5. 当xF=2.5时,yF=-2.5+5=2.5,即EF=2.5; 当xD=2.5时,yD=?(2.5?2)2+9=8.75,即DE=8.75. ∴DF=DE-EF=8.75-2.5=6.25>2.5.即DF>EF,这与EF=DF相矛盾, ∴四边形DCEB不能为平行四边形. |
据专家权威分析,试题“如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a+2b+c>0;③B点坐标为(4,0);④当x<-九年级数学
下一篇:把二次函数y=ax2+bx+c的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x轴的交点是A.(-2.5,0)B.(2.5,0)C.(-1.5,0)D.(1.5,0)-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |