如图,抛物线与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线于点C;(1)求该抛物线的解析式;(2)求点A关于直线的对称点的坐标,判定点是否在抛物线上,并说明理由-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-21 / 加入收藏 / 阅读 [打印]
的坐标为(﹣3,4).·······························7分
当x=﹣3时,.
所以,点A/在该抛物线上.································8分

存在.
理由:设直线的解析式为y=kx+b,
,解得
∴直线的解析式为.··················9分
设点P的坐标为,则点M为.
∵PM∥AC,
∴要使四边形PACM是平行四边形,只需PM=AC.又点M在点P的上方,
.
解得(不合题意,舍去)当x=2时,.
∴当点P运动到时,四边形PACM是平行四边形.····················11分

据专家权威分析,试题“如图,抛物线与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,..”主要考查你对  二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用  等考点的理解。关于这些考点的“档案”如下:

二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用

考点名称:二次函数的定义

  • 定义:
    一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
    ①所谓二次函数就是说自变量最高次数是2;
    ②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
    ③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。

  • 二次函数的解析式有三种形式:
    (1)一般式:(a,b,c是常数,a≠0);
    (2)顶点式: (a,h,k是常数,a≠0)
    (3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。

    二次函数的一般形式的结构特征:
    ①函数的关系式是整式;
    ②自变量的最高次数是2;
    ③二次项系数不等于零。

  • 二次函数的判定:
    二次函数的一般形式中等号右边是关于自变量x的二次三项式;
    当b=0,c=0时,y=ax2是特殊的二次函数;
    判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成(a≠0)的形式,那么这个函数就是二次函数,否则就不是。

考点名称:二次函数的图像

  • 二次函数的图像
    是一条关于对称的曲线,这条曲线叫抛物线。
    抛物线的主要特征:
    ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
    ②有对称轴;
    ③有顶点;
    ④c 表示抛物线与y轴的交点坐标:(0,c)。

  • 二次函数图像性质:
    轴对称:

    二次函数图像是轴对称图形。对称轴为直线x=-b/2a
    对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
    特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
    a,b同号,对称轴在y轴左侧
    b=0,对称轴是y轴
    a,b异号,对称轴在y轴右侧

    顶点:
    二次函数图像有一个顶点P,坐标为P ( h,k )
    当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
    h=-b/2a, k=(4ac-b^2)/4a。

    开口:
    二次项系数a决定二次函数图像的开口方向和大小。
    当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
    |a|越大,则二次函数图像的开口越小。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐