如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3.(1)求tan∠DBC的值;(2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标.-九年级数学
题文
如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在抛物线上且横坐标为3. (1)求tan∠DBC的值; (2)点P为抛物线上一点,且∠DBP=45°,求点P的坐标. |
答案
(1)tan∠DBC=; (2)P(﹣,). |
试题分析:(1)连接CD,过点D作DE⊥BC于点E.利用抛物线解析式可以求得点A、B、C、D的坐标,则可得CD//AB,OB=OC,所以∠BCO=∠BCD=∠ABC=45°.由直角三角形的性质、勾股定理和图中相关线段间的关系可得BC=4,BE=BC﹣DE=.由此可知tan∠DBC=; (2)过点P作PF⊥x轴于点F.由∠DBP=45°及∠ABC=45°可得∠PBF=∠DBC,利用(1)中的结果得到:tan∠PBF=.设P(x,﹣x2+3x+4),则利用锐角三角函数定义推知=,通过解方程求得点P的坐标为(﹣,). 试题解析: (1)令y=0,则﹣x2+3x+4=﹣(x+1)(x﹣4)=0, 解得 x1=﹣1,x2=4. ∴A(﹣1,0),B(4,0). 当x=3时,y=﹣32+3×3+4=4, ∴D(3,4). 如图,连接CD,过点D作DE⊥BC于点E. ∵C(0,4), ∴CD//AB, ∴∠BCD=∠ABC=45°. 在直角△OBC中,∵OC=OB=4, ∴BC=4. 在直角△CDE中,CD=3. ∴CE=ED=, ∴BE=BC﹣DE=. ∴tan∠DBC=; (2)过点P作PF⊥x轴于点F. ∵∠CBF=∠DBP=45°, ∴∠PBF=∠DBC, ∴tan∠PBF=. 设P(x,﹣x2+3x+4),则=, 解得 x1=﹣,x2=4(舍去), ∴P(﹣,). |
据专家权威分析,试题“如图,抛物线y=﹣x2+3x+4与x轴交于A、B两点,与y轴交于C点,点D在..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:二次函数(b>0)与反比例函数在同一坐标系中的图象可能是()A.B.C.D.-九年级数学
下一篇:如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4acB.ac>0C.a﹣b+c>0D.4a+2b+c<0-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |