如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知球网与点O的水平距离为-九年级数学
题文
如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处发出把球看成点,其运行的高度y(米)与运行的水平距离x(米)满足关系式y=a(x﹣6)2+h,已知 球网与点O的水平距离为9米,高度为2.43米,球场的边界距点O的水平距离为18米. (1)当h=2.6时,求y与x的函数关系式. (2)当h=2.6时,球能否越过球网?球会不会出界?请说明理由. (3)若球一定能越过球网,又不出边界.则h的取值范围是多少? |
答案
(1)y与x的关系式为:y=﹣(x﹣6)2+2.6, (2)球能过球网;会出界; (3)若球一定能越过球网,又不出边界,h的取值范围是:h≥. |
试题分析:(1)由h=2.6,球从O点正上方2m的A处发出,将点(0,2)代入解析式求出即可; (2)当x=9时,y=(x﹣6)2+2.6=2.45>2.43;当y=0时,(x﹣6)2+2.6=0,得x=6+>18即可作出判断; (3)根据当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),以及当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2)时分别得出h的取值范围,即可得出答案. 试题解析:(1)∵h=2.6,球从O点正上方2m的A处发出, ∴抛物线y=a(x﹣6)2+h过点(0,2), ∴2=a(0﹣6)2+2.6, 解得:a=, 故y与x的关系式为:y=(x﹣6)2+2.6, (2)当x=9时,y=(x﹣6)2+2.6=2.45>2.43, 所以球能过球网; 当y=0时,(x﹣6)2+2.6=0, 解得:x1=6+>18,x2=6﹣(舍去) 故会出界; (3)当球正好过点(18,0)时,抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得: , 解得, 此时二次函数解析式为:y=(x﹣6)2+, 此时球若不出边界h≥, 当球刚能过网,此时函数解析式过(9,2.43),抛物线y=a(x﹣6)2+h还过点(0,2),代入解析式得:, 解得, 此时球要过网h≥, 故若球一定能越过球网,又不出边界,h的取值范围是:h≥. |
据专家权威分析,试题“如图,排球运动员站在点O处练习发球,将球从点O正上方2米的点A处..”主要考查你对 二次函数的定义,二次函数的图像,二次函数的最大值和最小值,求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义二次函数的图像二次函数的最大值和最小值求二次函数的解析式及二次函数的应用
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1,下列结论正确的是()A.b2>4acB.ac>0C.a﹣b+c>0D.4a+2b+c<0-九年级数学
下一篇:如图,一段抛物线y=﹣x(x﹣1)(0≤x≤1)记为m1,它与x轴交点为O、A1,顶点为P1;将m1绕点A1旋转180°得m2,交x轴于点A2,顶点为P2;将m2绕点A2旋转180°得m3,交x轴于点A3,顶点为P-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |