如图,抛物线y=-x2+x-2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FE-九年级数学

首页 > 考试 > 数学 > 初中数学 > 二次函数的定义/2019-05-21 / 加入收藏 / 阅读 [打印]

题文

如图,抛物线y=-x2+x-2交x轴于A,B两点(点A在点B的左侧),交y轴于点C,分别过点B,C作y轴,x轴的平行线,两平行线交于点D,将△BDC绕点C逆时针旋转,使点D旋转到y轴上得到△FEC,连接BF.
(1)求点B,C所在直线的函数解析式;
(2)求△BCF的面积;
(3)在线段BC上是否存在点P,使得以点P,A,B为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

题型:解答题  难度:中档

答案

(1)直线BC的解析式为y=x﹣3;
(2)△BCF的面积为10;
(3)在线段BC上存在点P,使得以点P,A,B为顶点的三角形与△BOC相似, P点坐标为(2,﹣1)或(,﹣).


试题分析:(1)根据坐标轴上点的坐标特征可得点B,C的坐标,再根据待定系数法可得点B,C所在直线的函数解析式;
(2)根据勾股定理可得BC的长,根据旋转的性质和三角形面积公式即可求解;
(3)存在.分两种情况讨论:①过A作AP1⊥x轴交线段BC于点P1,则△BAP1∽△BOC;②过A作AP2⊥BC,垂足点P2,过点P2作P2Q⊥x轴于点Q.则△BAP2∽△BCO;依此讨论即可求解.
试题解析:(1)当y=0时,﹣x2+x﹣2=0,
解得x1=2,x2=4,
∴点A,B的坐标分别为(2,0),(4,0),
当x=0时,y=﹣2,
∴C点的坐标分别为(0,﹣2),
设直线BC的解析式为y=kx+b(k≠0),则
解得
∴直线BC的解析式为y=x﹣3;
(2)∵CD∥x轴,BD∥y轴,
∴∠ECD=90°,
∵点B,C的坐标分别为(4,0),(0,﹣2),
∴BC==2
∵△FEC是由△BDC绕点C逆时针旋转得到,
∴△BCF的面积=BC?FC=×2×2=10;
(3)存在.分两种情况讨论:
①过A作AP1⊥x轴交线段BC于点P1,则△BAP1∽△BOC,
∵点A的坐标为(2,0),
∴点P1的横坐标是2,
∵点P1在点BC所在直线上,
∴y=x﹣2=×2﹣2=﹣1,
∴点P1的坐标为(2,﹣1);
②过A作AP2⊥BC,垂足点P2,过点P2作P2Q⊥x轴于点Q.

∴△BAP2∽△BCO,
,

解得AP2=

∴AP2?BP=CO?BP2
×4=2BP2
解得BP2=
AB?QP2=AP2?BP2
∴2QP2=×
解得QP2=
∴点P2的纵坐标是﹣
∵点P2在BC所在直线上,
∴x=
∴点P2的坐标为(,﹣),
∴满足条件的P点坐标为(2,﹣1)或(,﹣).

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐