如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=12x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是___-数学
题文
如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=
|
答案
由图可知,∠AOB=45°, ∴直线OA的解析式为y=x, 联立
x2-2x+2k=0, △=b2-4ac=(-2)2-4×1×2k=0, 即k=
此交点的横坐标为1, ∵点B的坐标为(2,0), ∴OA=2, ∴点A的坐标为(
∴交点在线段AO上; 当抛物线经过点B(2,0)时,
解得k=-2, ∴要使抛物线y=
故答案为:-2<k<
|
据专家权威分析,试题“如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面..”主要考查你对 二次函数的定义 等考点的理解。关于这些考点的“档案”如下:
二次函数的定义
考点名称:二次函数的定义
- 定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x 的二次函数。
①所谓二次函数就是说自变量最高次数是2;
②二次函数(a≠0)中x、y是变量,a,b,c是常数,自变量x 的取值范围是全体实数,b和c可以是任意实数,a是不等于0的实数,因为a=0时,变为y=bx+c若b≠0,则y=bx+c是一次函数,若b=0,则y=c是一个常数函数。
③二次函数(a≠0)与一元二次方程(a≠0)有密切联系,如果将变量y换成一个常数,那么这个二次函数就是一个一元二次函数。 - 二次函数的解析式有三种形式:
(1)一般式:(a,b,c是常数,a≠0);
(2)顶点式: (a,h,k是常数,a≠0)
(3)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:已知二次函数y=x2+2x-3,解答下列问题:(1)用配方法将该函数解析式化为y=a(x+m)2+k的形式;(2)指出该函数图象的开口方向、顶点坐标、对称轴,以及它的变化情况.-数学
下一篇:函数y=2x2中,自变量x的取值范围是______,函数值y的取值范围是______.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |