如图已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A,B两点,其中A点坐标为,B点在y轴上,直线与x轴的交点为F.P为线段AB上的一个动点(点P与-九年级数学
题文
如图已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该二次函数的图象交于A,B两点,其中A点坐标为,B点在y轴上,直线与x轴的交点为F.P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象交于E点. |
(1)求k,m的值及这个二次函数的解析式; (2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点P,使得以点P,E,D为顶点的三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由. |
答案
(1)设抛物线解析式为 在抛物线上 二次函数解析式为: 令x=0得:y=2 即点在上 把代入得; (2) ; (3)假设存在点P,①当时,由题意可得 则 而,存在点P,其坐标为; ②当时, 过点E作EK垂直于抛物线的对称轴,垂足为K;由题意可得: 则 综上所述存在点P满足条件,其坐标为 , |
据专家权威分析,试题“如图已知二次函数图象的顶点坐标为C(1,1),直线y=kx+m的图象与该..”主要考查你对 求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:有一个截面边缘为抛物线形的拱形桥洞,桥洞离水面的最大高度为4m,跨度为10m。如图把它的截面边缘的图形放在所示的直角坐标系中。(1)直接写出抛物线的顶点坐标;(2)求这条抛-九年级数学
下一篇:已知二次函数。(1)求证:不论a为何实数,此函数图象与x轴总有两个交点;(2)设a<0,当此函数图象与x轴的两个交点的距离为时,求出此二次函数的解析式;(3)若此二次函数图象-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |