如图,矩形是由矩形(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点B逆时针旋转得到的,点在x轴的正半轴上,B点的坐标为(1,3),与AB交于D点。(1)求D点的坐标;(2)如果二次函数-九年级数学
题文
如图,矩形是由矩形(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点B逆时针旋转得到的,点在x轴的正半轴上,B点的坐标为 (1,3),与AB交于D点。 |
(1)求D点的坐标; (2)如果二次函数()的图象经过点O、两点且图象顶点M的纵坐标为-1,求这个二次函数的解析式; (3)若将直线OC绕点O旋转度()后与抛物线的另一个交点为P,则以O、、B、P为顶点的四边形能否是平行四边形?若能,求出的值;若不能,请说明理由。 |
答案
解:(1)连结BO,BO′,则BO=BO′, ∵BA⊥OO′, ∴AO=AO′, ∵B(1,3), ∴O′(2,0),M(1,-1), 易证△AOD'≌ △C'BD, ∴OD'=BD, 设OD'=m, 则AD=3-m , 又O'A=1, ∴m2=(3-m)2+12,即m=, ∴AD=, 即D点坐标为(1,)。 (2)抛物线过O(0,0),O'(2,0),M(1,-1)是顶点, 设y=a(x-1)2-1,则a=1, ∴y=(x-1)2-1, 即 y=x2-2x。 (3)O O'=2为平行四边形的边, ∴BP∥OO',BP=OO', 设P(x , 3),P在抛物线上, ∴x2-2x=3,解得:x1=-1,x2=3, ∴P(-1 ,3)或(3 ,3), 当点P(3,3)时,∠COP=α=45°,tanα=1; 当点P'(-1,3)时,∠COP'=α,tanα=。 |
据专家权威分析,试题“如图,矩形是由矩形(边OA在x轴正半轴上,边OC在y轴正半轴上)绕点..”主要考查你对 求二次函数的解析式及二次函数的应用,用坐标表示位置 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用用坐标表示位置
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x2)x+x1?x2]
=a(x-x1)(x-x2).
重要概念:
a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |