如图,点坐标分别为(4,0)、(0,8),点C是线段上一动点,点E在x轴正半轴上,四边形是矩形,且.设,矩形与重合部分的面积为.根据上述条件,回答下列问题:(1)当矩形的顶点D在直-九年级数学
题文
如图,点坐标分别为(4,0)、(0,8),点C是线段上一动点,点E在x轴正半轴上,四边形是矩形,且.设,矩形与重合部分的面积为.根据上述条件,回答下列问题: (1)当矩形的顶点D在直线AB上时,求t的值; (2)当时,求S的值; (3)直接写出S与t的函数关系式;(不必写出解题过程) (4)若,则t=_____。 |
答案
解:(1)由题意可得,, 而, 则解得, ∴当点D在直线AB上时,. (2)当时,点E与A重合,设与AB交于点F, 则由得, 即,解得, (3)当时, 当时, 当时, (4)8 |
据专家权威分析,试题“如图,点坐标分别为(4,0)、(0,8),点C是线段上一动点,点E在x轴..”主要考查你对 求二次函数的解析式及二次函数的应用,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:在Rt△ABC中,∠C=90°,AC=20cm,BC=15cm.现有动点P从点A出发,沿AC向点C方向运动,动点Q从点C出发,沿线段CB也向点B方向运动.如果点P的速度是4cm/秒,点Q的速度是2cm/秒,它-八年级数学
下一篇:如图,抛物线经过两点,此抛物线的对称轴为直线,顶点为C,且与直线AB交于点D.(1)求此抛物线的解析式;(2)直接写出此抛物线的对称轴和顶点坐标;(3)连接BC,求证:;-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |